∫∫∫(2xy^2+2yx^2+z)dv,其中,Ω={(x,y,z)|x^2+y^2+z^2≤2z}
实数x、y、z满足x=6-3yx+3y-2xy+2z
二重积分 求∫∫∫z^2dv 其中z>=根号下(x^2+y^2) 且x^2+y^2+z^20)
已知x,y,z 大于0,x+y+z=2,求证 xz/y(y+z)+zy/x(x+y)+yx/z(z+x)大于等于2/3
计算∫∫∫(x+y+z^2)dV,其中Ω即区域范围是由曲面x^2+y^2-Z^2=1和平面z=H,z=-H(H>0)所围
计算三重积分I=∫∫∫Ω(x^2+y^2+z^2)dv,其中Ω:x^2+y^2+z^2=a^2
化简(y-x)(z-x)/(x-2y+z)(x+y-2z)+(z-y)(x-y)/(xy-2z)(y+z-2x)+(x-
∫∫∫(x+y+z)∧2dV,其中Ω由锥面z=√(x∧2+y∧2)和球面x∧2+y∧2+z∧2=4所围立体,
计算三重积分∫∫∫z^2dv,其中Ω是曲面z=(x^2+y^2)^(1/2),z=1,z=2所围成的区域
计算∫∫∫(x^2+y^2)dv,其中Ω是由曲面x^2+y^2=2z与平面z=2,z=8所围成的闭区域
计算三重积分∫∫∫(x^2+y^2+z^2)dv,其中Ω由z=x^2+y^2+z^2所围成的闭区域.
(y-x)/(x+z-2y)(x+y-2z)+(z-y)(x-y)/(x+y-2z)(y+z-2x)+(x-z)(y-z
x,y,z正整数 x>y>z证明 x^2x +y^2y+z^2z>x^(y+z)*y^(x+z)*z^(x+y)