f(x)=(x^2+2x+a) f(bx)=9x^2-6x+2 a,b常数 则方程f(ax+b)=0的解集为
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 09:47:19
f(x)=(x^2+2x+a) f(bx)=9x^2-6x+2 a,b常数 则方程f(ax+b)=0的解集为
因为f(x)=x²+2x+a
所以f(bx)=(bx)²+2(bx)+a=9x²-6x+2
即(b²-9)x²+2(b+3)x+a-2=0
要使上式对于任意定义域内的实数x都成立,须使得:
b²-9=0,b+3=0且a-2=0
解得b=-3,a=2
则ax+b=2x-3,f(x)=x²+2x+2
所以方程f(ax+b)=0可表示为f(2x-3)=0
即(2x-3)²+2(2x-3)+2=0
整理得:
4x²-8x+5=0
因为Δ=64-80
所以f(bx)=(bx)²+2(bx)+a=9x²-6x+2
即(b²-9)x²+2(b+3)x+a-2=0
要使上式对于任意定义域内的实数x都成立,须使得:
b²-9=0,b+3=0且a-2=0
解得b=-3,a=2
则ax+b=2x-3,f(x)=x²+2x+2
所以方程f(ax+b)=0可表示为f(2x-3)=0
即(2x-3)²+2(2x-3)+2=0
整理得:
4x²-8x+5=0
因为Δ=64-80
已知函数f(x)=x2+2x+a,f(bx)=9x2-6x+2,其中x属于R,a,b为常数,则方程f(ax+b)的解集为
已知函数f(x)=x2+2x+a,f(bx)=9x2-6x+2,其中x∈R,a、b为常数,求方程f(ax+b)=0的解集
已知函数f(x)=x2+2x+a,f(bx)=ax2-6x+2 其中x∈R a,b为常数,则方程f(ax+b)=0的解集
已知函数f(x)=x*x+2x+a,f(bx)=9x*x-6x+2,其中x属于实数,a,b为常数,则方程f(ax+b)=
已知函数f(x)=x^2+2x+a,f(bx)=ax^2-6x+2,其中x为实数,a,b为常数,则方程f(ax+b)=0
已知函数f(x)=x^2+2x+a,f(bx)=9x^2-6x+2,其中x属于实数,a,b为常数,则方程f(ax+b)=
已知a,b为常数,且a≠0,f(x)=ax^2;+bx,f(2)=0,方程f(x)=x有两个相等实根
已知函数f(x)=x+4x+3a,f(bx)=16x–16x+9,其中x∈R,a,b为常数,则方程f(ax+b)=0的解
已知a,b为常数,且a不为0,f(x)ax^2+bx,f(2)=0,方程f(x)=x有两个相等的实数根,求函数f(x)
已知f(x)=x/ax+b(a,b为常数,a不等于0),f(2)=1,关于x的方程f(x)=x有唯一解,求y=f(x)的
已知二次函数f(x)=ax平方+bx(a,b为常数,且a不等于0)满足条件f(x-1)=f(3-x)且方程f(x)=2x
已知二次函数f(x)=ax^2+bx(a.b为常数,a不等于0).满足条件f(1+x)=f(1-x),且方程f(x)=x