作业帮 > 综合 > 作业

在△ABC与△BDE中,∠ABC=∠BDE=90°.BC=DE,AB=BD,M、M'分别为AB、BD的中点,如图,连接M

来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/06 09:54:06
在△ABC与△BDE中,∠ABC=∠BDE=90°.BC=DE,AB=BD,M、M'分别为AB、BD的中点,如图,连接MM'并延长,交CE于点K,试判断CK与EK的数量关系,
在△ABC与△BDE中,∠ABC=∠BDE=90°.BC=DE,AB=BD,M、M'分别为AB、BD的中点,如图,连接M
如图,延长MK至L,使KL=MM',连接LE,
则KL+KM′=MM'+KM′,即KM=LM′,
由(1)可知CM=EM′,
∵BD=AB,M是AB的中点,M'是BD的中点,
∴BM=BM′,
∴∠BMM′=∠BM′M,
由(1)知△BCM≌△DEM′,
∴∠BMC=∠EM′D,
∴∠CMK=∠KM′E,
∴△CMK≌△EM′L,
∴CK=EL,
又∠CKM=∠LKE=∠KLE,
∴KE=LE,
CK=KE.