作业帮 > 数学 > 作业

siny=1/3,sin(x+y)=1,求sin(2x+y)

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/15 13:04:56
siny=1/3,sin(x+y)=1,求sin(2x+y)
siny=1/3,sin(x+y)=1,求sin(2x+y)
sin(x+y)=1 所以可得:cos(x+y)=0
sin(2x+2y)=2sin(x+y)cos(x+y)=0
cos(2x+2y)=cos^2(x+y)-sin^2(x+y)=-1
siny=1/3 所以可得:cosy=±√[1-sin^2y]=±2√2/3
当:cosy=2√2/3 时有:
sin(2x+y)
=sin(2x+2y-y)
=sin(2x+2y)cosy-cos(2x+2y)siny
=-2√2/3
当cosy=-2√2/3 时有:
sin(2x+y)
=sin(2x+2y-y)
=sin(2x+2y)cosy-cos(2x+2y)siny
=2√2/3