泰勒公式求无穷小阶 (1-2X)^1/2是X的几阶无穷小 【(1-2X)^1/2】-【(1-3X)^1/3】又是X的几阶
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 21:24:21
泰勒公式求无穷小阶 (1-2X)^1/2是X的几阶无穷小 【(1-2X)^1/2】-【(1-3X)^1/3】又是X的几阶无穷 主要告诉我要把他们展开到几阶 为什么展开到那一阶 不是只要那一阶不等于0就OK了吗
首先纠正你的问题:(1-2X)^1/2不是x的无穷小(在x趋于0时)
到底要展开到几阶,你觉得展开到一阶就行了吗?[(1-2X)^1/2-[(1-3X)^1/3]如果只是展开到一阶
那么结果就为0,现在比如他作为分子,取分母为2x,分子与分母都是趋于0的
你能说极限为0吗?
所以必须展开到高阶,比如二阶,这样可能产生含有x的项,从而求出极限
到底要展开到几阶,你觉得展开到一阶就行了吗?[(1-2X)^1/2-[(1-3X)^1/3]如果只是展开到一阶
那么结果就为0,现在比如他作为分子,取分母为2x,分子与分母都是趋于0的
你能说极限为0吗?
所以必须展开到高阶,比如二阶,这样可能产生含有x的项,从而求出极限
当x趋近于0时,三次根号下(x^2+x^1/2)是x的几阶无穷小?
关于无穷小的比较 1、 当x趋于1时,(1-x^3)^2是1-x 的几阶无穷小?2 x趋于0时,求 lim [(根号下(
高数求几阶无穷小指出当x趋近0时,函数(1+tanx)^(1/2)-(1-sinx)^(1/2)是x的几阶无穷小?
关于泰勒公式 (1+x+2x^2+3x+o(x^2))^2 为什么等于 x^2 +o(x^2) 其中那个O表示高阶无穷小
(cosx+sinx)^(3x)-1是x的几阶无穷小?
设f(x)=(2^x)-1,当x趋近0时f(x)是x的() A,高阶无穷小B,低阶无穷小C,等价无穷小 D,同阶但不等价
1.当x趋近0时无穷小是x的n阶无穷小,求n.∫上限是1-cost,下线是0,中间是sint^2dt
x→0 X^2的高阶无穷小0(x^2)乘以 x 等于x的几阶无穷小?
已知当X趋近于0时,x^2ln(1+x^2)是sin^n(x)的高阶无穷小,sin^n(x)又是1-cosx的高阶无穷小
x趋近于0时,(1-cosx/2)是x的高阶无穷小怎么算?
高数 当X-0时,1-cos2X是x^2的 A高阶无穷小 B等价无穷小 C低阶无穷小 D同阶但非等价无穷小
当x—>0时,f(x)=e^(2x)-1与x比较是等价无穷小还是高阶无穷小?