作业帮 > 数学 > 作业

∫x.(sinx)^3dx 求不定积分

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 13:18:13
∫x.(sinx)^3dx 求不定积分
∫x.(sinx)^3dx 求不定积分
∫xsin³x dx
= ∫x(1-cos²x)sinx dx
= ∫xsinx dx - ∫xcos²xsinx dx
= ∫xsinx dx - (1/2)∫x(1+cos2x)sinx dx
= ∫xsinx dx - (1/2)∫xsinx dx - (1/2)∫xsinxcos2x dx
= (1/2)∫xsinx dx - (1/4)∫x(sin3x-sinx) dx
= (1/2)∫xsinx dx - (1/4)∫xsin3x dx + (1/4)∫xsinx dx
= -(3/4)∫x dcosx + (1/4)(1/3)∫x dcos3x
= -(3/4)xcosx + (3/4)∫cosx dx + (1/12)xcos3x - (1/12)∫cos3x dx
= -(3/4)xcosx + (3/4)sinx + (1/12)xcos3x - (1/36)sin3x + C