初三几何竞赛题四边形ABCD的对角线AC与BD相交于点E,边AB,CD的中垂线相交于点F,点M、N分别为边AB、CD的中
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 12:00:28
初三几何竞赛题
四边形ABCD的对角线AC与BD相交于点E,边AB,CD的中垂线相交于点F,点M、N分别为边AB、CD的中点,直线EF分别与边BC、AD相交与点P、Q.若MF·CD=NF·AB且DQ·BP=AQ·CP.求证PQ⊥BC
四边形ABCD的对角线AC与BD相交于点E,边AB,CD的中垂线相交于点F,点M、N分别为边AB、CD的中点,直线EF分别与边BC、AD相交与点P、Q.若MF·CD=NF·AB且DQ·BP=AQ·CP.求证PQ⊥BC
连接AF、BF、DF、CF,∵点M、N分别为边AB、CD的中点,MF⊥AB,NF⊥CD,∴△AFB和△CFD为等腰△,AF=BF,DF=CF,∵MF·CD=NF·AB,MF/NF=AB/CD=AM/DN,∠AMF=∠DNF=90°,∴△AMF∽△DNF,同理可证:△BMF∽△CNF,则△AFB∽△CFD,∴∠AFB=∠CFD,∵∠BFD=∠AFB+∠AFD,∠AFC=∠CFD+∠AFD,∴∠BFD=∠AFC,∵AF=BF,DF=CF,∴△BFD≌△AFC,∴AC=BD,∠FAC=∠FBD,∠AEB=∠AFB,则A、E、F、B四点共圆,∠BAF=∠BEF,同理可证D、E、F、C四点共圆,∠CDF=∠CEF,∵∠BAF=∠CDF,∴∠BEF=∠CEF,则PQ为∠BEC的角平分线,AE/ED=AQ/QD,BP/CP=BE/EC,∵DQ·BP=AQ·CP,AQ/QD=BP/CP,∴AE/ED=BE/EC,∵∠AED和∠BEC为对顶角,∴△AED∽△BEC,∠DAC=∠DBC,∠ADB=∠ACB,则A、B、C、D四点共圆,∵AC=BD,∴∠BAD=∠ADC,∵∠ABD=∠DCA,∴△ABD≌△DCA,∴AB=CD,∠ACB=∠DBC,△BEC为等腰△,∴PQ⊥BC.
数学题证明题:如图,在四边形ABCD中,AB=CD,对角线AC、BD相交于点O,E、F分别是AC、BD的中点
平行四边形ABCD的对角线AC,BD相交于点O,EF过点O且与AB,CD分别相交于点E,F.求证:OE=OF.
平行四边形ABCD的对角线AC,BD相交于点O,Ef过点o且与AB,CD分别相交于点E,F,求证:OE等于OF
四边形abcd对角线ac,bd相交于点p,且ac=bd.e,f分别是ab,cd的中点,ef交bd于m,交AC于N,求证;
已知:四边形ABCD的对角线AC=BD相交于点O,M,N分别是AB,CD的中点,MN分别交BD,AC于点E,F求证:OE
在四边形ABCD中,对角线AC与BD相交于点E,且AC=BD,M、N为AB、CD中点,BD、AC交MN于点F、G.求证△
已知四边形ABCD的对角线AC、BD相交于F,M、N分别为AB、CD的中点,MN分别交BD、AC于点P、Q,且∠FPQ=
如图:已知四边形ABCD的对角线AC,BD相交于点E,AB=AE,CD=DE,M,N,F,分别为AD,BE,CE的中点求
如图,在四边形abcd中,对角线ac,bd,相交于点o,且ac=bd,m,n,分别是边ab,cd的中点,mn交bd,ac
1、如图1,已知四边形ABCD的对角线AC、BD相交于点E,AB=AE,CD=DE,M、N、F分别是AD、BE、CE的中
有关四边形的在四边形ABCD中,对角线AC,BD相交于点O,E,F分别是AB,CD的中点,且EF分别交BD,AC于点MN
关于四边形的在四边形ABCD中,对角线AC,BD相交于点O,E,F分别是AB,CD的中点,且EF分别交BD,AC于点MN