90°张角性质证明P(x0,y0)为y²=2px 上一点过P做90° 的张角,求证该张角所对动弦恒过定点(x0
过y^2=2px(x>0)上一点P(x0,y0)(y0>0)作两直线分别交抛物线于A(X1,Y1)B(X2,Y2)
已知定点M(x0,y0)在抛物线m:y^2=2px(p>0)上,动点A,B∈m且向量MA*向量MB=0,求证:弦AB必过
过抛物线y=x^2上一点P(x0,y0)作两条倾斜角互补的直线,分别交抛物线于
过曲线y=x^3-x^2上点P(x0,y0) (x0>0)处的切线斜率为8,则此切线方程为
已知定点P(x0,y0)不在直线l:f(x,y)=0上,则方程f(x,y)-f(x0,y0)=0表示一条过点P且平行于l
过抛物线y^2=2px(p>0)上一定点P(x0,y0)作两条直线分别交抛物线于
过y^2=2px(x>0)上一点P(x0,y0)(y0>0)作两直线分别交抛物线于A(X1,Y1)B(X2,Y2)1)求
设曲线C;X^2=2Y上的点P(X0,Y0),X0不等于0,过P作曲线C的切线L
过椭圆上一点P(x0,y0)的切线方程和 过椭圆外一点P(x0,y0)的切线方程一样吗?
椭圆切线方程过椭圆 x^2/a^2+y^2/b^2=1 上任一点 P(x0,y0)的切线方程是x0*x/a^2+y0*y
圆的切线公式推导过圆x^2+y^2=r^2 上一点P(x0,y0)的切线方程为xx0+yyo=r^2 ;圆x^2+y^2
圆心在原点,半径为r的圆,过圆上一点P(x0,y0)的切线方程为x0x+y0y=r^2,为什么?怎么推的?