数列有关于放缩法第3问
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 08:05:35
数列有关于放缩法第3问
n≥2时,an²+a(n-1)²=2ana(n-1)+1
[an-a(n-1)]²=1
数列为递增数列,an≥a(n-1)
an-a(n-1)=1,为定值,又a1=1,数列{an}是以1为首项,1为公差的等差数列
an=1+1×(n-1)=n
b1=2a1=2×1=2
b2(a2-a1)=2b1 b2×(2-1)=2b1 b2=2b1
b2/b1=2,公比为2
bn=2×2^(n-1)=2ⁿ
数列{an}的通项公式为an=n;数列{bn}的通项公式为bn=2ⁿ
anbn=n×2ⁿ
Sn=a1b1+a2b2+a3b3+anbn=1×2+2×2²+3×2³+...+n×2ⁿ
2Sn=1×2²+2×2³+...+(n-1)×2ⁿ+n×2^(n+1)
Sn-2Sn=-Sn=2+2²+...+2ⁿ-n×2^(n+1)
=2×(2ⁿ-1)/(2-1)-n×2^(n+1)
=(1-n)×2^(n+1) -2
Sn=(n-1)×2^(n+1) +2
(2n+5)/[bn×(2n+1)(2n+3)]
=[2/(2n+1)-1/(2n+3)]/2ⁿ
=1/[(2n+1)·2^(n-1)] -1/[(2(n+1)+1)·2ⁿ]
Tn=1/[(2×1+1)×2^0]-1/[(2×2+1)×2]+1/[(2×2+1)×2]-1/[(2×3+1)×2²]+...+1/[(2n+1)×2^(n-1)]-1/[(2(n+1)+1)×2ⁿ]
=1/3 -1/[(2n+3)×2ⁿ]
1/[(2n+3)×2ⁿ]>0 1/3- 1/[(2n+3)×2ⁿ]
[an-a(n-1)]²=1
数列为递增数列,an≥a(n-1)
an-a(n-1)=1,为定值,又a1=1,数列{an}是以1为首项,1为公差的等差数列
an=1+1×(n-1)=n
b1=2a1=2×1=2
b2(a2-a1)=2b1 b2×(2-1)=2b1 b2=2b1
b2/b1=2,公比为2
bn=2×2^(n-1)=2ⁿ
数列{an}的通项公式为an=n;数列{bn}的通项公式为bn=2ⁿ
anbn=n×2ⁿ
Sn=a1b1+a2b2+a3b3+anbn=1×2+2×2²+3×2³+...+n×2ⁿ
2Sn=1×2²+2×2³+...+(n-1)×2ⁿ+n×2^(n+1)
Sn-2Sn=-Sn=2+2²+...+2ⁿ-n×2^(n+1)
=2×(2ⁿ-1)/(2-1)-n×2^(n+1)
=(1-n)×2^(n+1) -2
Sn=(n-1)×2^(n+1) +2
(2n+5)/[bn×(2n+1)(2n+3)]
=[2/(2n+1)-1/(2n+3)]/2ⁿ
=1/[(2n+1)·2^(n-1)] -1/[(2(n+1)+1)·2ⁿ]
Tn=1/[(2×1+1)×2^0]-1/[(2×2+1)×2]+1/[(2×2+1)×2]-1/[(2×3+1)×2²]+...+1/[(2n+1)×2^(n-1)]-1/[(2(n+1)+1)×2ⁿ]
=1/3 -1/[(2n+3)×2ⁿ]
1/[(2n+3)×2ⁿ]>0 1/3- 1/[(2n+3)×2ⁿ]