a1=1,S(n+1)=4an+2(n属于N*)bn=a(n+1)-2an,求bn的通项公式
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 23:48:33
a1=1,S(n+1)=4an+2(n属于N*)bn=a(n+1)-2an,求bn的通项公式
1)求bn的通项公式,
2)设cn=an/2^n,求证an是等差数列,
3)求an通项公式和Sn
1)求bn的通项公式,
2)设cn=an/2^n,求证an是等差数列,
3)求an通项公式和Sn
1)求bn的通项公式
由S(n+1)=4an+2,知S(n)=4a(n-1)+2,两者相减,得
S(n+1)-S(n)=a(n+1)=4[an-a(n-1)]
由bn=a(n+1)-2an知,b(n-1)=an-2a(n-1)
因bn=a(n+1)-2an=4[an-a(n-1)]-2an=2an-4a(n-1)=2*b(n-1)
可见bn是公比为2的等比数列,由a1=1,s2=4a1+2,知a2=5,
从而b1=a2-2a1=5-2×1=3
因此bn=3*2^(n-1)
2)设cn=an/2^n,求证cn是等差数列
由cn=an/2^n,知an=2^n*cn,
且a(n+1)=2^(n+1)*c(n+1),a(n-1)=2^(n-1)*c(n-1),
由bn=2an-4a(n-1)=2*2^n*cn-4*2^(n-1)*c(n-1)=2^(n+1)*[cn-c(n-1)]=3*2^(n-1)
得cn-c(n-1)=3*2^(n-1)/2^(n+1)=3/4
同样有,
b(n+1)=2a(n+1)-4an=2*2^(n+1)*c(n+1)-4*2^n*cn=2^(n+2)*[c(n+1)-cn]=3*2^n
得c(n+1)-cn=3*2^n/2^(n+2)=3/4
由c(n+1)-cn=cn-c(n-1)=3/4知cn为一等差数列.
3)求an通项公式和Sn
由c1=a1/2^1=1/2及公差3/4知cn=1/2+3/4*(n-1)=3/4*n-1/4
则an=2^n*cn=2^n*(3/4*n-1/4)=(3n-1)*2^(n-2)
a(n-1)=[3(n-1)-1]*2^(n-3)=(3n-4)*2^(n-3)
Sn=4a(n-1)+2=4*[(3n-4)*2^(n-3)]+2=(3n-4)*2^(n-1)+2
由S(n+1)=4an+2,知S(n)=4a(n-1)+2,两者相减,得
S(n+1)-S(n)=a(n+1)=4[an-a(n-1)]
由bn=a(n+1)-2an知,b(n-1)=an-2a(n-1)
因bn=a(n+1)-2an=4[an-a(n-1)]-2an=2an-4a(n-1)=2*b(n-1)
可见bn是公比为2的等比数列,由a1=1,s2=4a1+2,知a2=5,
从而b1=a2-2a1=5-2×1=3
因此bn=3*2^(n-1)
2)设cn=an/2^n,求证cn是等差数列
由cn=an/2^n,知an=2^n*cn,
且a(n+1)=2^(n+1)*c(n+1),a(n-1)=2^(n-1)*c(n-1),
由bn=2an-4a(n-1)=2*2^n*cn-4*2^(n-1)*c(n-1)=2^(n+1)*[cn-c(n-1)]=3*2^(n-1)
得cn-c(n-1)=3*2^(n-1)/2^(n+1)=3/4
同样有,
b(n+1)=2a(n+1)-4an=2*2^(n+1)*c(n+1)-4*2^n*cn=2^(n+2)*[c(n+1)-cn]=3*2^n
得c(n+1)-cn=3*2^n/2^(n+2)=3/4
由c(n+1)-cn=cn-c(n-1)=3/4知cn为一等差数列.
3)求an通项公式和Sn
由c1=a1/2^1=1/2及公差3/4知cn=1/2+3/4*(n-1)=3/4*n-1/4
则an=2^n*cn=2^n*(3/4*n-1/4)=(3n-1)*2^(n-2)
a(n-1)=[3(n-1)-1]*2^(n-3)=(3n-4)*2^(n-3)
Sn=4a(n-1)+2=4*[(3n-4)*2^(n-3)]+2=(3n-4)*2^(n-1)+2
a1=1,a(n+1)=(1+1/n)an+n+1/2^n,设bn=an/n求数列bn的通项公式
在数列{an}中,a1=1,a(n+1)=(1+1/n)an+(n+1/2^n)设bn=an/n,求bn的通项公式
已知数列{an}和{bn}满足关系式:bn=a1+a2+a3+...+an/n(n属于N*) (1)若bn=n^2,求数
在数列an中a1=2,a(n+1)下标=4an-3n+1 1设bn=an-n求证bn是等比数列 2求数列an的前n项和s
已知数列an满足a1=1,a(n+3)=3an,数列bn的前n项和Sn=n2+2n+1 ⑴求数列an,bn的通项公式 ⑵
数列{an}前n项和为Sn,已知a1=1,S(n+1)=4an+2,1、设bn=a(n+1)-2an,求bn的通项公式2
在数列﹛an﹜中,a1=1,a(n+1)=(1+1÷n)an+[(n+1)÷2的n次方],设bn=an÷n,求bn的通项
快,数列{An}的前n项和为Sn,a1=1,S(n+1)=4An+2,若Bn=A(n+1)-2An,求1,Bn?2,若C
{an},{bn}中a1=2,b1=4,an,bn,an+1成等差数列bn,an+1,bn+1成等比数列(n∈N*)
设数列{An}满足,A1=1,An+1=3An,n属于N+.(1)求An的通项公式及前n项和Sn(2)已知bn是等差数列
数列按满足a1=1 a(n+1)=2^n-3an,设bn=an/2^n,求数列bn的递推公式 bn的通项公式an的通项公
设数列an满足a1+2a2+3a3+.+nan=2^n(n属于N*)求数列an的通项公式 设bn=n^2an,求数列bn