定积分计算 计算到等号后面的过程,
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 17:38:28
定积分计算 计算到等号后面的过程,
∫ x^a (1-x)^{b-1} dx (0到1范围内)
=[ax^{a-1} (1-x)^{b-1}] (0到1范围内) +a/b ∫ x^{a-1} (1-x)^b dx
∫ x^a (1-x)^{b-1} dx (0到1范围内)
=[ax^{a-1} (1-x)^{b-1}] (0到1范围内) +a/b ∫ x^{a-1} (1-x)^b dx
你这等式有问题吧?若按分布积分算的话,你的过程也是错的,应该是
∫[0->1] x^a (1-x)^{b-1} dx = -(1/b)x^a (1-x)^b | [0->1] + a/b ∫ x^{a-1} (1-x)^b dx
而且∫ x^a (1-x)^{b-1} dx (0到1范围内)这不正是BETA函数么?
∫[0->1] x^a (1-x)^{b-1} dx = B(a+1,b)
∫[0->1] x^a (1-x)^{b-1} dx = -(1/b)x^a (1-x)^b | [0->1] + a/b ∫ x^{a-1} (1-x)^b dx
而且∫ x^a (1-x)^{b-1} dx (0到1范围内)这不正是BETA函数么?
∫[0->1] x^a (1-x)^{b-1} dx = B(a+1,b)