无穷小比较【如果lim b/a=0,b是比a高阶的无穷小;如果lim b/a=常数,b是a的同阶无穷小,特殊地,如果这个
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 22:07:49
无穷小比较
【如果lim b/a=0,b是比a高阶的无穷小;
如果lim b/a=常数,b是a的同阶无穷小,特殊地,如果这个常数是1,a和b是等价无穷小;如果lim b/a=0,b是比a高阶的无穷小.】
高阶表示在自变量的莫一变化过程中,b趋于零的速度比a快,低阶表示b趋于零的速度比a慢,既然同阶表示速度相同,为什么还有普通的同阶(lim=常数)和等价(lim=1)之分?
郁闷
【如果lim b/a=0,b是比a高阶的无穷小;
如果lim b/a=常数,b是a的同阶无穷小,特殊地,如果这个常数是1,a和b是等价无穷小;如果lim b/a=0,b是比a高阶的无穷小.】
高阶表示在自变量的莫一变化过程中,b趋于零的速度比a快,低阶表示b趋于零的速度比a慢,既然同阶表示速度相同,为什么还有普通的同阶(lim=常数)和等价(lim=1)之分?
郁闷
呃,同阶无穷小是一个等价关系,即给定一个无穷小量,就确定了一个等价类,包含与这个无穷小同阶的所有无穷小量.那假设 a,b 为同阶无穷小,a 是 c 的高阶无穷小,那就能确定 b 肯定也是 c 的高阶无穷小.
等价无穷小只是一个特殊情况而已,假如 a 与 b 是等价无穷小,那么就意味着 a 与 b 相差一个至多是它们的高阶无穷小那么多的量.在不在乎这样的差别的情况下可以把 a,b 视为等价.
等价无穷小只是一个特殊情况而已,假如 a 与 b 是等价无穷小,那么就意味着 a 与 b 相差一个至多是它们的高阶无穷小那么多的量.在不在乎这样的差别的情况下可以把 a,b 视为等价.
当x→0时,x-sinx是x^2的 a 低阶无穷小 b 高阶无穷小 c 等价无穷小 d 同
X→0时,e^x-(ax+b)是比x高阶的无穷小,其中a,b是常数
高数 当X-0时,1-cos2X是x^2的 A高阶无穷小 B等价无穷小 C低阶无穷小 D同阶但非等价无穷小
设f(x)=(2^x)-1,当x趋近0时f(x)是x的() A,高阶无穷小B,低阶无穷小C,等价无穷小 D,同阶但不等价
无穷小的性质如果一个函数a(x)是另一个函数b(x)的高阶无穷小,a(x)与b(x)之间会有什么性质或关系?
设当x->0时,aX²+bX+C-cosx是比X²高阶的无穷小,求常数a,b,C的值?
设x趋近于0时ax2+bx+c–cosx是比x2高阶的无穷小,试确定常数a b c
已知当x趋于0时,(e^(x^2)-(ax^2+bx+c))是比x^2高阶的无穷小,试确定常数a,b,c.
f(x)=5^x+7^x-2,则当x→0时,A.f(x)与x是同阶但非等价无穷小,B,f(x)是比x高阶无穷小,请给出一
等价无穷小问题lim(sinx)/x=1x-0 为什么是等价无穷小lima(x)/b(x)=1当x-0的时候不是 lim
e^(x^2) - (ax^2+bx+c) 是比x^2的高阶无穷小,其中a,b,c为常数,
为什么数学当中要定义高阶无穷小这些概念?a是b的高阶无穷小能说明什么?有什么意义?