求微分方程y''+y=x+cosx的通解
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 07:14:10
求微分方程y''+y=x+cosx的通解
y''+y=0的通解是y=C1sinx+C2cosx,y''+y=x的特解为y=x,y’‘+y=cosx的特解设为
y=x(acosx+bsinx),于是y'=acosx+bsinx+x(bcosx-asinx),
y''=2bcosx-2asinx-x(bsinx+acosx),代入得
2bcosx-2asinx=cosx,于斯b=0.5,a=0,特解是y=0.5xsinx.
综上,通解是y=C1sinx+C2cosx+x(0.5sinx+1).
再问: 为什么把y’‘+y=cosx的特解设为y=x(acosx+bsinx)设成y=acosx+bsinx不行吗?
再答: 不行。因为cosx是齐次方程的解,这事设为y=acosx+bsinx代入必得0。 当方程右端项f(x)是齐次方程的解时,设特解时要乘以一个x才行。 这个书上都有介绍吧。
y=x(acosx+bsinx),于是y'=acosx+bsinx+x(bcosx-asinx),
y''=2bcosx-2asinx-x(bsinx+acosx),代入得
2bcosx-2asinx=cosx,于斯b=0.5,a=0,特解是y=0.5xsinx.
综上,通解是y=C1sinx+C2cosx+x(0.5sinx+1).
再问: 为什么把y’‘+y=cosx的特解设为y=x(acosx+bsinx)设成y=acosx+bsinx不行吗?
再答: 不行。因为cosx是齐次方程的解,这事设为y=acosx+bsinx代入必得0。 当方程右端项f(x)是齐次方程的解时,设特解时要乘以一个x才行。 这个书上都有介绍吧。