(2n-1)A(n+1)+(2n+1)An=4n^2-1 a1=2 求通项公式
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 15:42:30
(2n-1)A(n+1)+(2n+1)An=4n^2-1 a1=2 求通项公式
(2n-1)A(n+1)+(2n+1)An=(2n+1)(2n-1)
两边同时除以(2n+1)(2n-1)
得A(n+1)/2(n+1)-1 + An/2n-1=1
令Bn=An/2n-1,则B(n+1)+Bn=1
则Bn+B(n-1)=1
可以推导出B1=B3=...=B(2n+1)
B2=B4=...=B(2n)
a1=2,所以B1=B3=...=B(2n+1)=2
那么B2=B4=...=B(2n)=-1
An=(2n-1)Bn
当n为1,3,5等奇数时,An=4n-2
当n位2,4,6等偶数时,An=1-2n
两边同时除以(2n+1)(2n-1)
得A(n+1)/2(n+1)-1 + An/2n-1=1
令Bn=An/2n-1,则B(n+1)+Bn=1
则Bn+B(n-1)=1
可以推导出B1=B3=...=B(2n+1)
B2=B4=...=B(2n)
a1=2,所以B1=B3=...=B(2n+1)=2
那么B2=B4=...=B(2n)=-1
An=(2n-1)Bn
当n为1,3,5等奇数时,An=4n-2
当n位2,4,6等偶数时,An=1-2n
已知数列an中,a1=2且a n+1(下标)=[n+2/n]×an,求通项公式
若an=a(n-1)+1+(1/2)^(n-1),a1=0,求通项公式
序列 a1=3 已知a(n+1)=(2)^(n+1)-2an 求通项公式.
数列证明,求通项公式已知数列{an}中,a1=1/3,an*a(n-1)=a(n-1)-an(n>=2,n属于正整数),
在数列an中,a1=1,且an=(n/(n-1))a(n-1)+2n*3的(n-2)次方 求an通项公式
数列{an}中,a1=2,an+1=an+ln(n+1/n),求通项公式
.感激= 已知数列{an}中,a1=3,an=(2^n)*a(n-1) (n》2,n∈N*)求数列an通项公式
已知数列an中,a1=1 2a(n+1)-an=n-2/n(n+1)(n+2) 若bn=an-1/n(n+1)
已知数列a1=2,a(n+1)=an+1/n(n+2) 求an的通项公式
a1=1,a(n+1)=(1+1/n)an+n+1/2^n,设bn=an/n求数列bn的通项公式
数列{An}中,a1=2,a (n+1)=4an-3n+1,n为N*
已知数列{an}满足a1=1/4 , an=an-1/[(-1)nan-1-2] (n≥2,n∈N) (1)求通项公式a