如图,△ABC内接于⊙O,AB是⊙O的直径,CD平分∠ACB交⊙O于点D,交AB于点F,弦AE⊥CD于点H,连接CE、O
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 23:29:15
如图,△ABC内接于⊙O,AB是⊙O的直径,CD平分∠ACB交⊙O于点D,交AB于点F,弦AE⊥CD于点H,连接CE、OH.
(1)求证:△ACE∽△CFB;
(2)若AC=6,BC=4,求OH的长.
(1)求证:△ACE∽△CFB;
(2)若AC=6,BC=4,求OH的长.
(1)证明:∵AB是⊙O的直径,
∴∠ACB=90°;
∵CD平分∠ACB,
∴∠ACD=∠FCB=45°;
∵AE⊥CD,
∴∠CAE=45°=∠FCB;
在△ACE与△BCF中,∠CAE=∠FCB,∠E=∠B,
∴△ACE∽△CFB;
(2)延长AE、CB交于点M;
∵∠FCB=45°,∠CHM=90°,
∴∠M=45°=∠CAE;
∴HA=HC=HM,CM=CA=6;
∵CB=4,
∴BM=6-4=2;
∵OA=OB,HA=HM,
∴OH是△ABM的中位线,
∴OH=
1
2BM=1.
∴∠ACB=90°;
∵CD平分∠ACB,
∴∠ACD=∠FCB=45°;
∵AE⊥CD,
∴∠CAE=45°=∠FCB;
在△ACE与△BCF中,∠CAE=∠FCB,∠E=∠B,
∴△ACE∽△CFB;
(2)延长AE、CB交于点M;
∵∠FCB=45°,∠CHM=90°,
∴∠M=45°=∠CAE;
∴HA=HC=HM,CM=CA=6;
∵CB=4,
∴BM=6-4=2;
∵OA=OB,HA=HM,
∴OH是△ABM的中位线,
∴OH=
1
2BM=1.
如图,△ABC内接于⊙O,AB是⊙O的直径,CD平分∠ACB交⊙O于点D,交AB于点F,弦AE⊥CD于点H,连接CE、O
如图 三角形ABC内接于圆O AB是圆O直径 CD平分角ACB交圆O于点D 交AB于F 弦AE垂直CD于H 连CE OH
如图,△ABC中,以BC为直径的⊙O交AB于点D,CA是⊙O的切线,AE平分∠BAC交BC于点E,交CD于点F.
如图,△ABC中,AC=6,BC=4,以AB为直径的⊙O经过点C,CD平分∠ACB交⊙O于点D,AE⊥CD于点E,则OE
如图,等腰△ABC内接于⊙O,BA=CA,弦CD平分∠ACB,交AB于点H,过点B作AD的平行线分别交AC,DC于点E,
在⊙O中,AB是直径,CD是弦,CE⊥CD于点C,交AB于点E,DF⊥CD于点D,交AB于点F求证:AE=BF
如图,A、B、C三点在圆O上,CE是圆O的直径,CD⊥AB于D,延长CD交圆O于F,连接AE、BF.求证:(1)∠ACD
△ABC内接于圆心O,AB是圆心O的直径,点D在圆心O上,过点C的切线交AD的延长线于点E,且AE垂直,连接CE、CD
△ABC内接于圆O,AB是圆O的直径,点D在圆O上,过点C的切线交AD延长线于于E且AB⊥CE,连接CD,
如图,AB为⊙O的直径,CD⊥AB于点E,交⊙O于点D,OF⊥AC于点F.
如图,A,B,C三点在圆O上,CE是圆O的直径,CD⊥AB于D,延长CD交园O于F,连接AE,BF.
如图,AB是⊙O的直径,弦CD垂直平分半径OA,P是BC弧的中点,弦CF平分∠DCP,交AP于H点,连接PF交AB于G点