设f(x)=asin(πx+Q)+bcos(πx+B)+4,且f(2003)=5,则f(2004)=
设函数f(x)=asin(πx+α)+bcos(πx+β),其中a、b、α、β都是常数,且f(2004)=-2,
设函数f(x)=asin(π x+a)+bcos(π x+k),其中a,b.a.k都是非零实数,且满足f(2004)=
f(x)=asin(πx+a)+bcos(πx+b),且f(2009)=3,求f(2010)
设函数f(x)=asin(π x+a)+bcos(π x+β)+4,其中a,b.a.β都是非零实数,若f(2003)=6
设函数f(x)=asin(π x+a)+bcos(π x+β)+4,其中a,b.a.β都是非零实数,若f(2011)=5
已知函数f(x)=asin(πx+α)+bcos(πx+β)+4,x∈R,且f(2011)=3,则求f(2012)的值
设函数f(x)=asin(πx+α)+bcos(πx+β)(其中a,b,α,β为非零实数),若f(2006)=5,
设f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β均为非零实数),若f(2003)=6,求f(2
已知函数f(x)=asin(πx+α)+bcos(πx+β)+1,且f(2006)=-1,则f(2007)的值为多少?
高中数学题已知函数f(x)=asin(πx+a)+bcos(πx+β),且f(2007)=3,则f(2008)的值是
设f(x)=asin (πx+α)+bcos(πx+β),其中a,b,α,β都是非零常数,若f(2011)=18/23,
设f(1)=a,f(x)=asin(πx+α)+bcos(πx+α)其中abα∈R且a b ≠0,α≠kπ(k∈z)若f