为什么若limx→+∞ f'(x)=0,则存在x0,当x>x0时恒有f’(x)>1?
若limx→x0f(x)存在,limg(x)不存在,那么limx→x0【f(x)+、-g(x)】与limx→x0【f(x
证明:若函数在区间[x0-a,x0]上连续,在(x0-a,x0)内可导,且limx->x0-(x0左极限)f'(x)存在
对于函数f(x)=ax2+(b+1)x+b-2,(a≠0),若存在实数x0,使f(x0)=x0成立,则称x0为f(x)的
对于函数f(x)=ax2+(b+1)x+b-2(a≠0),若存在实数x0,使f(x0)=x0成立,则称x0为f(x)的不
对于函数f(x)=ax2+(b+1)x+b-2(a≠0),若存在实数x0,使f(x0)=x0成立,则称x0为f(x)的不
对于函数f(x)=ax^2+(b+1)x+b+1(a≠0),若存在x0∈R使f(x0)=x0,则称x0为f(x)的不动点
若函数f(x)在x=x0处极限存在,则f(x)在x=x0处( ).
极限limx→x0f(x)存在是函数f(x)在点x=x0处连续的( )
对于函数f(x),若存在x0∈R,使f(x0)=x0,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x
函数f(x)在x0处可导且limx趋于0 f(x0+3x)-f(x0-x)/3x=1 f'(x)=
如果lim(x趋于x0)f(x)=3,那么必存在x0的某邻域,当x在该邻域内(x不等于x0),恒有f(x)大于0,为什么
若lim(x→∞)x/f(x0+x)-f(x0)=2,则f(x0)的导数为?