∑=球面下x2+y2+z2=R2上半球面上侧,∫∫zdxdy= (2为平方,∫∫下面有一个∑)
利用球坐标求积分x2+y2+z2,其中区域是锥面z=x2+y2开根号与球面x2+y2+z2=r2所
高数题,曲线积分若曲线L为球面x2+y2+z2=a2被平面x+y+z=0所截得的圆周,则第一类曲线积分∫L(x2+y2+
计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,∑是上半球面z=根下1-x^2-y^2的上侧
∫(y+1)dx+(z+2)dy+(x+3)dz,L是球面x2+y2+z2=a2与平面x+y+z=0的交线,从x抽正向看
计算曲面积分 ∫∫(x^2+y^2)ds,其中 ∑是上半球面z=根号(4-x^2-y^2)
一道曲线积分题.求∫c (x2+y2) ds,其中C是x2+y2+z2=R2与x+y+z=0的交线
利用高斯公式计算曲面积分∑xdydz+ydzdx+zdxdy,其中∑为球面(x-a)^2+(y-b) ^2+(z-c)
计算 ∫ ∫∑(x^2+y^2)dS,其中为∑球面x^2+y^2+z^2=a^2 计算曲面积分
已知多项式A=x2+2y2-z2,B=-4x2+3y2+2z2且A+B+C=0,则C为( )
x,y,z为正实数 求证 x2/(y2+z2+yz)+y2/(z2+x2+zx)+z2/(x2+y2+xy)>=1
计算I=∫∫1/(x2+y2+z2)dS,S是抛物面z=x2+y2与平面z=1所围立体的外表面
球面的三重积分设M由上半球面x^2+y^2+z^2=a^2与平面z=0围成,则x^2+y^2+z^2在区域M上的三重积分