求救!help!an=2的n次方,bn=1+2(n-1),求数列{an*bn}的前n项和Sn.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 06:31:23
求救!help!
an=2的n次方,bn=1+2(n-1),求数列{an*bn}的前n项和Sn.
an=2的n次方,bn=1+2(n-1),求数列{an*bn}的前n项和Sn.
由于打不出幂次方,用^表示次方 如2^n表示2的n次方,
an=2^n
bn=1+2(n-1)
an×bn=2^n+(2^(n+1))×(n-1)=2^n+(2^(n+1))×n-2^(n+1)
2^n-2^(n+1)=2^n-2×2^n= -2^n
an×bn=(2^(n+1))×n-2^n
(2^(n+1))×n前n项A=(2^2)×1+(2^3)×2+(2^4)×3+(2^5)×4+……+(2^(n+1))×n (1)
A×2= (2^3)×1+(2^4)×2+(2^5)×3+……+(2^(n+1))×(n-1)+(2^(n+2))×n (2)
式(2)-(1)
A=(2^(n+2))×n -(2^2+2^3+2^4+2^5+……+2^(n+1))
2^2+2^3+2^4+2^5+……+2^(n+1)为首项为2^2,公比为2的等比数列前N项和=
(2^2)*(1-2^n)/(1-2)=-4×(1-2^n )
A=(2^(n+2))×n+4×(1-2^n )
2^n前n项为首项为2,公比为2的等比数列,B=2(1-2^n)/(1-2)= -2×(1-2^n )
Sn=A-B=(2^(n+2))×n+4×(1-2^n )+2×(1-2^n )=(2^(n+2))×n+6×(1-2^n )=6+(4n-6)×2^n
an=2^n
bn=1+2(n-1)
an×bn=2^n+(2^(n+1))×(n-1)=2^n+(2^(n+1))×n-2^(n+1)
2^n-2^(n+1)=2^n-2×2^n= -2^n
an×bn=(2^(n+1))×n-2^n
(2^(n+1))×n前n项A=(2^2)×1+(2^3)×2+(2^4)×3+(2^5)×4+……+(2^(n+1))×n (1)
A×2= (2^3)×1+(2^4)×2+(2^5)×3+……+(2^(n+1))×(n-1)+(2^(n+2))×n (2)
式(2)-(1)
A=(2^(n+2))×n -(2^2+2^3+2^4+2^5+……+2^(n+1))
2^2+2^3+2^4+2^5+……+2^(n+1)为首项为2^2,公比为2的等比数列前N项和=
(2^2)*(1-2^n)/(1-2)=-4×(1-2^n )
A=(2^(n+2))×n+4×(1-2^n )
2^n前n项为首项为2,公比为2的等比数列,B=2(1-2^n)/(1-2)= -2×(1-2^n )
Sn=A-B=(2^(n+2))×n+4×(1-2^n )+2×(1-2^n )=(2^(n+2))×n+6×(1-2^n )=6+(4n-6)×2^n
an=2*3^n-1 若数列bn满足bn=an+(-1)^n*ln(an),求数列bn前n项和Sn
数列an的前n项和Sn满足Sn=n^2-8n+1,若bn=|an|,求数列{bn}的通项公式
数列{an}的前n项和为Sn=n平方+n,(1)求an,(2)令bn=2的an次方,证明bn为等比数列,并求前n项和Tn
已知数列{an},前n项和Sn=2n-n^2,an=log5^bn,其中bn>0,求数列{bn}的前n项和
an=2的n-1次方,bn=2n-1,设数列an的前n项和为sn,求数列{sn.bn}的前n项和Tn
已知数列{an}的前n项和Sn=n^2+n,1求{an}的通项公式 2若bn=(1/2)的an次方+n,求{bn}的前n
数列an的前n项和为Sn,Sn=2an-1,数列bn满足b1=2,bn+1=an+bn.求数列bn的前n项和Tn
已知数列{an}前n项和Sn=n^2+n,令bn=1/anan+1,求数列{bn}的前n项和Tn
已知数列{an}的前n项和为Sn=2的n-1次方-2 求{an}的通项公式an 令bn=2n+an tn是bn的前n项和
设等差数列{an}的前 n项和为Sn,且 Sn=(an+1)^/2(n属于N*)若bn=(-1)nSn,求数列{bn}的
数列{an}的前n项和Sn=2an-1(n≥1),数列{bn}满足b1=3,b(n+1)=an+bn,求数列{bn}的前
a1=1.an+1=2an+2^n.bn=an/2^n-1.证明bn是等差数列、求数列的前n项和sn?