求证N=5^2*2^2n+1*2^n-3^n*3^n*6^n+1能被13整除
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 11:19:15
求证N=5^2*2^2n+1*2^n-3^n*3^n*6^n+1能被13整除
证明:
5^2×3^(2n+1)×2^n-3^n×6^(n+2)
=5^2×3^(2n+1)×2^n-3^n×(2×3)^(n+2)
=5^2×3^(2n+1)×2^n-3^n×2^(n+2)×3^(n+2)
=5^2×3^(2n+1)×2^n-3^(2n+2)×2^(n+2)
=5^2×3^(2n+1)×2^n-3^(2n+1)×3×2^n×2^2
=3^(2n+1)×2^n×[5^2-3×2^2]
=3^(2n+1)×2^n×[25-12]
=3^(2n+1)×2^n×13
5^2×3^(2n+1)×2^n-3^n×6^(n+2)
=5^2×3^(2n+1)×2^n-3^n×(2×3)^(n+2)
=5^2×3^(2n+1)×2^n-3^n×2^(n+2)×3^(n+2)
=5^2×3^(2n+1)×2^n-3^(2n+2)×2^(n+2)
=5^2×3^(2n+1)×2^n-3^(2n+1)×3×2^n×2^2
=3^(2n+1)×2^n×[5^2-3×2^2]
=3^(2n+1)×2^n×[25-12]
=3^(2n+1)×2^n×13
请教初一的数学题急求证:N=52*32n+1*2n-3n*3n*6n+2能被13整除.2 2n+1 n n n n+2分
求证:对于任意自然数n,(n+5)-(n+2)(n+3)一定能被6整除
N=52*32n+1*2-3n*6n+2能被13整除吗?
求证:5的2次方*3的2n+1次方*2的n次方-3的n次方*6的n+2次方能被13整除
求证5的二次方*3的2n+1次方*2的n次方-3的n次方*6的n+2次方能被13整除
证明6能整除(6^n-3^n-2^n)-1,其中n为奇数
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
52•32n+1•2n-3n•6n+2能被13整除吗?
求证:对任何正整数n,3^(4n+2)+5^(2n+1)能被14整除
求证对任意自然数n,3 ^4n+2 +5 ^2n+1能被14整除
求证 2^(6n-3)+3^(2n-1)能被11整除
试说明:5^2·3^2n+1·2^n-6^n·3^n·6^n能被13整除.