x^2+y^2=1,求xy的取值范围求(y-2)/(x-3)的取值范围
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 13:01:31
x^2+y^2=1,求xy的取值范围求(y-2)/(x-3)的取值范围
方法一:不妨设x=sina,y=cosa
a∈R
∴x*y=sina*cosa=(1/2)*(2sina*cosa)=(1/2)*sin2a
∵-1≤sin2a≤1
∴-1/2≤(1/2)*sin2a≤1/2
即
-1/2≤xy≤1/2
方法二:(xy)^2=[x*√(1-x^2)]^2=x^2*(1-x^2)
根据均值不等式
x^2*(1-x^2)≤[(x^2+1-x^2)/2]^2=(1/2)^2=1/4
即(xy)^2≤1/4
∴-1/2≤xy≤1/2
观察式子,可以看出和求直线斜率的公式类似
所以(y-2)/(x-3)代表的是
圆x^2+y^2=1上的点与点(3,2)连线所在直线的斜率
设k=(y-2)/(x-3)
∴直线方程为y=k(x-3)+2
方法一(复杂):
联立圆方程x^2+y^2=1
得(1+k^2)x^2+2k(2-3k)x-1+(2-3k)^2=0
要求相切时的斜率k值
所以△=0时,
b^2-4ac=4k^2*(2-3k)-4(1-k^2)(2-3k)=0
解得k=(12±4√3)/16
∴(12-4√3)/16≤k≤(12+4√3)/16
即(12-4√3)/16≤(y-2)/(x-3)≤(12+4√3)/16
方法二(简单):
直线与圆相切时,直线到圆心距离等于半径
据点到直线的距离公式
|-3k+2|/√(1+k^2)=1
两边平方,然后解出k=(12±4√3)/16
∴(12-4√3)/16≤k≤(12+4√3)/16
即(12-4√3)/16≤(y-2)/(x-3)≤(12+4√3)/16
终于解完了,花了很多时间,好的话加分~
a∈R
∴x*y=sina*cosa=(1/2)*(2sina*cosa)=(1/2)*sin2a
∵-1≤sin2a≤1
∴-1/2≤(1/2)*sin2a≤1/2
即
-1/2≤xy≤1/2
方法二:(xy)^2=[x*√(1-x^2)]^2=x^2*(1-x^2)
根据均值不等式
x^2*(1-x^2)≤[(x^2+1-x^2)/2]^2=(1/2)^2=1/4
即(xy)^2≤1/4
∴-1/2≤xy≤1/2
观察式子,可以看出和求直线斜率的公式类似
所以(y-2)/(x-3)代表的是
圆x^2+y^2=1上的点与点(3,2)连线所在直线的斜率
设k=(y-2)/(x-3)
∴直线方程为y=k(x-3)+2
方法一(复杂):
联立圆方程x^2+y^2=1
得(1+k^2)x^2+2k(2-3k)x-1+(2-3k)^2=0
要求相切时的斜率k值
所以△=0时,
b^2-4ac=4k^2*(2-3k)-4(1-k^2)(2-3k)=0
解得k=(12±4√3)/16
∴(12-4√3)/16≤k≤(12+4√3)/16
即(12-4√3)/16≤(y-2)/(x-3)≤(12+4√3)/16
方法二(简单):
直线与圆相切时,直线到圆心距离等于半径
据点到直线的距离公式
|-3k+2|/√(1+k^2)=1
两边平方,然后解出k=(12±4√3)/16
∴(12-4√3)/16≤k≤(12+4√3)/16
即(12-4√3)/16≤(y-2)/(x-3)≤(12+4√3)/16
终于解完了,花了很多时间,好的话加分~
x^2+y^2+xy=3,求x+3y的取值范围
x方+y方+xy=1 求x-2y的取值范围
且4y^2+4xy+x+6=0 求x 的取值范围
已知x> 0 y> 0 x+2y+xy=6,求x+2y的取值范围.
已知X.Y属于R,X^2+Y^2-XY小于等于1,求X+Y的取值范围
已知实数xy满足X的平方+y的平方=1,求y/x+2的取值范围
已知y根号[(x-1)/y]=负根号[(x-1)y],求xy的取值范围,并化简根号[2xy-(x^2+1)y]
已知实数xy满足x方+y方=1求y+2/x+1的取值范围
若x^2+y^2=1,求3x+4y的取值范围.
若方程组3X+Y=-4K+1,X+3Y=3的解XY满足2X+Y>2,求K的取值范围
如果方程组3x+2y=k+2,4x+y=4k-1的解xy满足x>y,求k的取值范围
设x,y是实数,且x^2+xy+y^2=1,求x^2-xy+y^2的取值范围 用换元法计算!