作业帮 > 数学 > 作业

数列an满足a1=1/3,Sn=n(2n-1)an,求an

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 23:28:05
数列an满足a1=1/3,Sn=n(2n-1)an,求an
数列an满足a1=1/3,Sn=n(2n-1)an,求an
Sn=n(2n-1)an,S(n+1)=(n+1)[2(n+1)-1]a(n+1)
=(n+1)[2n+1]a(n+1)
S(n+1)-Sn=a(n+1)
即(n+1)[2n+1]a(n+1)-n(2n-1)an=a(n+1)
n(2n-1)an=(2n^2+3n)a(n+1)
(2n-1)an=(2n+3)a(n+1)
a(n+1)=(2n-1)/(2n+3)an a2=1/5*1/3=1/15
=(2n-1)/(2n+3)*(2n-3)/(2n+1)a(n-1)
=(2n-1)/(2n+3)*(2n-3)/(2n+1)*(2n-5)/(2n-1)a(n-2)
.
=(2n-1)/(2n+3)*(2n-3)/(2n+1)*(2n-5)/(2n-1)*...*1/5a1
=(2n-1)/(2n+3)*(2n-3)/(2n+1)*(2n-5)/(2n-1)*...*1/5*1/3
=1/[(2n+3)(2n+1)]
an=1/[(2n+1)(2n-1)]