设方阵A满足A^2-6A+8E=0,且A转置=A,试证A-3E为正交矩阵
设方阵A满足A²+3A-2E=0,证明方阵A+3E可逆,并求A+3E的逆矩阵.
设方阵A满足A*A-A-2E=0,证明矩阵A+E可逆,并求它.
设4阶方阵A满足/A+3E/=0,AA^T=2E,矩阵/A/
设方阵A满足A*A=A 证明A+3E可逆,并求(A+3E)逆矩阵
设方阵 A=E-2aaT,其中 E 为 n 阶单位矩阵,a 为 n 维单位列向量,证明:A为对称的正交矩阵.
线性代数特征值设n阶方阵A满足A^2-3A+2E=0(E为单位矩阵),求A得特征值
设n阶实方阵A满足A^2-4A+3E=0,证明 B=(2E-A)^T(2E-A)是正定矩阵
设方阵A满足A的3次方-2A+3E=0,证明A+E可逆,并求(A+E)的逆矩阵
设n阶方阵A,B满足A*BA=4BA-2E且|A|=2,|E-2A|≠0,求矩阵B
设方阵A满足矩阵方程A^2+A-7E=0,证明A,A+E,A-2E均可逆,并求其逆
设方阵满足A^2-4A-E=0,证明A及4A+E均可逆,并求A及4A+E的逆矩阵
设方阵A满足A^3-A^2+2A-E=0 ,证明: A及A-E均可逆.