作业帮 > 数学 > 作业

直线(1+a)x+y+1=0与圆(x-1)2+y2=1有两个不同的交点,则a的范围.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 11:17:12
直线(1+a)x+y+1=0与圆(x-1)2+y2=1有两个不同的交点,则a的范围.
直线(1+a)x+y+1=0与圆(x-1)2+y2=1有两个不同的交点,则a的范围.
园为(x+1)^2+y^2=1 以(1,0)为中心 半径为1的园(过原点)
直线为y=-(a+1)x-1 当x=0时y=-1
所以直线恒过(0,-1)点只有x=0和y=-1与园相切
x=0不可能 所以y=-1 1+a=0
所以a=-1