那个知道费马大定理:a^n+b^n=c^n 当n>2时,且abc不等于0,有没有正数解.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 09:00:21
那个知道费马大定理:a^n+b^n=c^n 当n>2时,且abc不等于0,有没有正数解.
证明:
m,n属于非负整数,x,y,z是正整数.j 表示“奇数”,k=2^(m+1)j 表示“偶数”.
按奇数与偶数的加法形式讨论费马方程:
1)偶数+偶数:
k1^n+k2^n=k3^n
2^n 2^m1n j1^n + 2^n 2^m2n j2^n = 2^n 2^m3n j3^n
2^m1n j1^n + 2^m2n j2^n = 2^m3n j3^n
等式两边同时除以 min (2^m1n,2^m2n ,2^m3n),又分七种情况:
A)m1=m2=m3
得:j1^n + j2^n = j3^n,偶数=奇数,产生矛盾.
B)仅m1=m2
j1^n + j2^n = 2^(m3-m1)n j3^n ,
令m4=m3-m1
若m42
若j3是j1^n与j2^n的公因数j1=j2=j3
则有j4^n+j5^n=2^(m4)n ——待证明
2^(m4)n不是j1^n与j2^n的公因数
j1^n/ 2^(m4)n+ j2^n /2^(m4)n= j3^n
若j1=j2
则有2j1^n/ 2^(m4)n= j3^n
奇数/偶数=奇数,产生矛盾,
j1不等于j2
奇数 /2^n ,为末尾为5的小数
若要 j1^n/ 2^(m4)n+ j2^n /2^(m4)n等于整数,j1^n/ 2^(m4)n与 j2^n /2^(m4)n的小数位数要相同 j1/ 2^(m4)与 j2 /2^(m4)的小数位数也要相同
通过计算观察,j1^n/ 2^(m4)n+ j2^n /2^(m4)n要等于整数只能等于奇数,
推出j3=奇数
j1^n/ 2^(m4)n+ j2^n /2^(m4)n=奇数
j1^n/2^n+ j2^n/2^n =奇数乘 2^(m4-1)n
奇数乘2^(m4-1)n不等于奇数,产生矛盾,
可见,m12,“费马大定理”在正整数范围内成立.
同理:应由1)2)3)可证,n>2,“费马大定理”在整数范围内成立
m,n属于非负整数,x,y,z是正整数.j 表示“奇数”,k=2^(m+1)j 表示“偶数”.
按奇数与偶数的加法形式讨论费马方程:
1)偶数+偶数:
k1^n+k2^n=k3^n
2^n 2^m1n j1^n + 2^n 2^m2n j2^n = 2^n 2^m3n j3^n
2^m1n j1^n + 2^m2n j2^n = 2^m3n j3^n
等式两边同时除以 min (2^m1n,2^m2n ,2^m3n),又分七种情况:
A)m1=m2=m3
得:j1^n + j2^n = j3^n,偶数=奇数,产生矛盾.
B)仅m1=m2
j1^n + j2^n = 2^(m3-m1)n j3^n ,
令m4=m3-m1
若m42
若j3是j1^n与j2^n的公因数j1=j2=j3
则有j4^n+j5^n=2^(m4)n ——待证明
2^(m4)n不是j1^n与j2^n的公因数
j1^n/ 2^(m4)n+ j2^n /2^(m4)n= j3^n
若j1=j2
则有2j1^n/ 2^(m4)n= j3^n
奇数/偶数=奇数,产生矛盾,
j1不等于j2
奇数 /2^n ,为末尾为5的小数
若要 j1^n/ 2^(m4)n+ j2^n /2^(m4)n等于整数,j1^n/ 2^(m4)n与 j2^n /2^(m4)n的小数位数要相同 j1/ 2^(m4)与 j2 /2^(m4)的小数位数也要相同
通过计算观察,j1^n/ 2^(m4)n+ j2^n /2^(m4)n要等于整数只能等于奇数,
推出j3=奇数
j1^n/ 2^(m4)n+ j2^n /2^(m4)n=奇数
j1^n/2^n+ j2^n/2^n =奇数乘 2^(m4-1)n
奇数乘2^(m4-1)n不等于奇数,产生矛盾,
可见,m12,“费马大定理”在正整数范围内成立.
同理:应由1)2)3)可证,n>2,“费马大定理”在整数范围内成立
数学演绎推理已知a,b,c是正数且a^2+b^2=c^2求证:当n>2且n为整数时,a^n+b^n
已知a,b,c是正实数,且a^2+b^2=c^2.求证:当n>2且n为自然数时,a^n+b^n
已知abc均为实数 且a^2+b^2=c^2,当n为整数 n>2时,比较c^n 与 a^n+b^n的大小
已知abc不等于0,且a/|a|+b/|b|+c/|c|的最大值是m,最小值是n.求m/2+3n的值
已知三角形ABC的三边长为a,b,c,且a=m/n-n/m,b=m/n+n/m,c=2(m>n>0).判定三角形ABC的
已知△ABC的三边为a、b、c,且a=m/n-n/m,b=m/n+n/m,c=2(m>n>0),判断△ABC的形状
已知△ABC的三边长为a,b,c,且a=m/n-n/m,b=m/n+n/m,c=2(m>n>0).请判断△ABC的形状.
费马定理求证不存在自然数a,b,c满足a^n+b^n=c^n(n>2,n∈Z),(^后的数字是指数)
已知m(b+c)=n(c+a)=k(a+b),且mnk不等于0.求证:(b-c)/(m(n-k))=(c-a)/(n(k
已知△ABC的三边长为a、b、c,且a=m/n-n/m,b=m/n+m,c=2,(m>n>0),请判断△ABC的形状
已知:a、b、c都不等于0,且a/|a|+b/|b|+c/|c|+abc/|abc|的最大值是m,最小值是n,
1、已知a,b,c都不等于0,且|a|分之a+|b|分之b+|c|分之c+|abc|分之abc的最大值为m,最小值为n,