洛比达法则那一章的 lim x→∞ (π/2 - arctanx)^(1/lnx)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 09:23:52
洛比达法则那一章的 lim x→∞ (π/2 - arctanx)^(1/lnx)
y = (π/2 - arctanx)^(1/ln x)
ln y = ln (π/2 - arctan x)/ln x
记: A(x) = ln (π/2 - arctan x)
B(x) = ln x
ln y = A(x)/B(x)
A(∞) = - ∞, B(∞) = ∞
lim (x→∞) ln y = lim (x→∞) A'(x)/B'(x)
A‘(x) = - 1/[(1+x^2) (π/2 - arctan x)]
B'(x) = 1/x
A‘(x) / B'(x) = - x / [(1+x^2) (π/2 - arctan x)] = [x/(1+x^2)] / ( arctan x - π/2) (1)
当 x→∞ A‘(x) / B'(x) 仍然是0/0型的不定式,对(1)还得用一次洛比达法则:
(1)式分子的导数为:(1 - x^2)/(1 + x^2)^2
(1)式分母的导数为:1/(1+x^2)
因此
lim (x→∞) ln y = lim (x→∞) A'(x)/B'(x) = lim (x→∞) (1-x^2)/(1+x^2)
= - 1
y = e^(-1) = 1/e
从而 lim x→∞ (π/2 - arctan x)^(1/ln x) = 1/e
ln y = ln (π/2 - arctan x)/ln x
记: A(x) = ln (π/2 - arctan x)
B(x) = ln x
ln y = A(x)/B(x)
A(∞) = - ∞, B(∞) = ∞
lim (x→∞) ln y = lim (x→∞) A'(x)/B'(x)
A‘(x) = - 1/[(1+x^2) (π/2 - arctan x)]
B'(x) = 1/x
A‘(x) / B'(x) = - x / [(1+x^2) (π/2 - arctan x)] = [x/(1+x^2)] / ( arctan x - π/2) (1)
当 x→∞ A‘(x) / B'(x) 仍然是0/0型的不定式,对(1)还得用一次洛比达法则:
(1)式分子的导数为:(1 - x^2)/(1 + x^2)^2
(1)式分母的导数为:1/(1+x^2)
因此
lim (x→∞) ln y = lim (x→∞) A'(x)/B'(x) = lim (x→∞) (1-x^2)/(1+x^2)
= - 1
y = e^(-1) = 1/e
从而 lim x→∞ (π/2 - arctan x)^(1/ln x) = 1/e
用洛必达法则求下列函数的极限.lim((兀/2-arctanx)/(1/x)) x→∞
lim(x→0+) lncotx/lnx 求极限 ,用洛比达法则
极限四则运算法则问题要运用极限的四则运算法则 应满足什么条件?lim(X→∞)(1/x)(arctanx)=lim(X→
lim(2/πarctanx)^x x→∞ lim x^2 e^(1/x^2) x→0 用罗比达求极限.
用洛必达法则求极限 1,lim(x→0)arctanx-x/sinx^3 2,lim(x→0)lncosax/lncos
用洛必达法则解lim(X趋正无穷)((π/2)-arctanx)/(1/x)lim(X趋0)(ln(1+sin2x))/
高数极限问题:求lim(π/2-arctanx)^(1/lnx) (x趋于正无穷)
罗比塔法则 lim(2/3.14*arctanX)的x次方,x趋向于无穷,答案是多少
lim(x→+∞)(2/π*arctanx)^x求极限
lim(x→+∞)(π/2-arctanx)/sin1/x,
lim(x→∞)x(π/2-arctanx)
lim(X→∞)(arctanx)=π/2