作业帮 > 数学 > 作业

洛比达法则那一章的 lim x→∞ (π/2 - arctanx)^(1/lnx)

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 09:23:52
洛比达法则那一章的 lim x→∞ (π/2 - arctanx)^(1/lnx)
洛比达法则那一章的 lim x→∞ (π/2 - arctanx)^(1/lnx)
y = (π/2 - arctanx)^(1/ln x)
ln y = ln (π/2 - arctan x)/ln x
记: A(x) = ln (π/2 - arctan x)
B(x) = ln x
ln y = A(x)/B(x)
A(∞) = - ∞, B(∞) = ∞
lim (x→∞) ln y = lim (x→∞) A'(x)/B'(x)
A‘(x) = - 1/[(1+x^2) (π/2 - arctan x)]
B'(x) = 1/x
A‘(x) / B'(x) = - x / [(1+x^2) (π/2 - arctan x)] = [x/(1+x^2)] / ( arctan x - π/2) (1)
当 x→∞ A‘(x) / B'(x) 仍然是0/0型的不定式,对(1)还得用一次洛比达法则:
(1)式分子的导数为:(1 - x^2)/(1 + x^2)^2
(1)式分母的导数为:1/(1+x^2)
因此
lim (x→∞) ln y = lim (x→∞) A'(x)/B'(x) = lim (x→∞) (1-x^2)/(1+x^2)
= - 1
y = e^(-1) = 1/e
从而 lim x→∞ (π/2 - arctan x)^(1/ln x) = 1/e