作业帮 > 数学 > 作业

圆锥曲线的综合问题若A,B是过椭圆x²/a²+y²/b²=1(a>b>0)的中心

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 15:55:54
圆锥曲线的综合问题
若A,B是过椭圆x²/a²+y²/b²=1(a>b>0)的中心的一条弦,M是椭圆上任意一点,且AM,BM与两坐标轴均不平行,kAM,kBM分别表示直线AM,BM的斜率,则kAM*kBM=
圆锥曲线的综合问题若A,B是过椭圆x²/a²+y²/b²=1(a>b>0)的中心

特殊法,因为AB是任意弦,M是任意点,取AB是长轴,M是短轴端点,显然
kAM=b/a  kBM=-b/a     kAM*kBM= -(b^2)/(a^2)