作业帮 > 数学 > 作业

若x趋近于3 则 lim(x^2+ax+b)/(x^2-2x-3)=5 则a b的值为

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 06:00:24
若x趋近于3 则 lim(x^2+ax+b)/(x^2-2x-3)=5 则a b的值为
若x趋近于3 则 lim(x^2+ax+b)/(x^2-2x-3)=5 则a b的值为
解.当x→0时,x²-2x-3是无穷小量,要使极限存在,则分母也是无穷小量即
9+3a+b=0即b=-3a-9
lim(x²+ax+b)/(x²-2x-3)=lim(x²+ax-3a-9)/(x²-2x-3)
=lim[(x+3)(x-3)+a(x-3)]/[(x+1)(x-3)]
=lim[(x-3)(x+3+a)]/[(x+1)(x-3)]
=lim(x+3+a)/(x+1)
=(3+3+a)/(3+1)=5
解得a=14
b=-3*14-9=-51