作业帮 > 数学 > 作业

目标函数Z=kx-y的可行域为四边形OEFG(含边界) 其中G、E的坐标分别是(0,1),(1,0),若点( 2/3,4

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 06:54:28
目标函数Z=kx-y的可行域为四边形OEFG(含边界) 其中G、E的坐标分别是(0,1),(1,0),若点( 2/3,4/5 )是Z的最优解,则k的取值范围是( )
目标函数Z=kx-y的可行域为四边形OEFG(含边界) 其中G、E的坐标分别是(0,1),(1,0),若点( 2/3,4
(-10/3,-12/5)
.已知以 为自变量的目标函数 的可行域z=kx+y 如图阴影部分(含边界),A(1,0)B(3,0)C(4,2)D(2, 下列可行域中能使线性目标函数z=y-x取得最大值1是(图中阴影部分含边界)(  ) 如图,在平面直角坐标系xoy中,矩形OEFG的顶点E的坐标为(4,0),顶点G的坐标为(0,2),将矩形OEFG绕点O逆 如图,在平面直角坐标系XOY中,矩形OEFG的顶点E坐标为(4,0),顶点G坐标为(0,2).将矩形OEFG绕点O逆时针 如图,在平面直角坐标系XOY中,矩形OEFG的顶点E坐标为(4,0),顶点G坐标为(0,2).将矩形OEFG绕点O逆 如图,在平面直角坐标系xOy中,矩形OEFG的顶点E坐标为(4,0),顶点G坐标为(0,2).将矩形OEFG绕点O逆时针 在如图所示的坐标平面的可行域内(阴影部分且包括边界),若目标函数z=x+ay取得最小值的最优解有无数个,则y/(x-a) 线性规划的可行域是由直线x=0,y=0,2y-x-10=0和2x-y-10=0围成的四边形,若B点是使目标函数z=ax+ 已知平面区域D由A(1,3)B(2,0)C(3,1)为顶点的三角形和内部边界组成 若目标函数Z=-ax+y(a>0) 正方形ABCD和正方形OEFG中,点A和点F的坐标分别为(3,2),(-1,-1),则两个正方形的位似中心 如图,在平面直角坐标系xOy中,矩形OEFG的顶点E坐标为(4,2),OG边与y轴重合.将矩形OEFG绕点O逆时针旋转, 已知变量x,y满足约束条件1≤x+y≤4,-2≤x-y≤2.若目标函数z=ax+y(其中z>0)仅在点(3,