作业帮 > 数学 > 作业

已知f(x)=2sin(-2x+π/6)+a+1(a为常数)

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 13:01:09
已知f(x)=2sin(-2x+π/6)+a+1(a为常数)
1.求函数单调递增,递减区间
2.求f(x)最小值并求x值
3.对称中心
4.π/6≤x≤π3时f(x)最小值等于-1,求a
5.π/6≤x≤π/3时f(x)最大值为1,求a
已知f(x)=2sin(-2x+π/6)+a+1(a为常数)
1、对f(x)求导,得f'(x)=2cos(-2x+π/6)*(-2)=4cos(-2x+π/6)
对函数f'(x)=4cos(-2x+π/6),
当-π/2+2kπ≤-2x+π/6≤π/2+2kπ时,f'(x)≤0,f(x)单调递减,此时-π/6-kπ≤x≤π/3-kπ
当π/2+2kπ≤-2x+π/6≤π+2kπ时,f'(x)≥0,f(x)单调递增,此时-5π/12-kπ≤x≤-π/6-kπ
2、f(x)取得最小值时,必有f'(x)=4cos(-2x+π/6)=0
解得-2x+π/6=π/2+kπ,即x=-π/6-kπ/2
将-2x+π/6=π/2+kπ代入f(x)得:f(x)=2sin(π/2+kπ)+a+1
此时,当k为奇数时,sin(π/2+kπ)=-1;当k为偶数时,sin(π/2+kπ)=1
显然,只有当k取奇数时,f(x)取得最小值为:2sin(π/2+kπ)+a+1=2*(-1)+a+1=a-1
此时,x=-π/6-kπ/2 (k=2n+1,n∈Z)
3、∵函数sin(x)的对称中心为x=π/2+kπ
∴函数f(x)=2sin(-2x+π/6)+a+1的对称中心为:-2x+π/6=π/2+kπ,解得x=-π/6-kπ/2 (k∈Z)
4、若当π/6≤x≤π/3时,f(x)单调递减,∴f(x)的最小值为f(π/3)=-1
即f(π/3)=2sin(-2π/3+π/6)+a+1=2sin(-π/2)+a+1=2*(-1)+a+1=a-1=-1,∴a=0
5、若当π/6≤x≤π/3时,f(x)单调递减,∴f(x)的最大值为f(π/6)=1
即f(π/6)=2sin(-2π/6+π/6)+a+1=2sin(-π/6)+a+1=2*(-1/2)+a+1=a=1,∴a=1
呼!头都做晕了,