已知f(x)=2sin(-2x+π/6)+a+1(a为常数)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 13:01:09
已知f(x)=2sin(-2x+π/6)+a+1(a为常数)
1.求函数单调递增,递减区间
2.求f(x)最小值并求x值
3.对称中心
4.π/6≤x≤π3时f(x)最小值等于-1,求a
5.π/6≤x≤π/3时f(x)最大值为1,求a
1.求函数单调递增,递减区间
2.求f(x)最小值并求x值
3.对称中心
4.π/6≤x≤π3时f(x)最小值等于-1,求a
5.π/6≤x≤π/3时f(x)最大值为1,求a
1、对f(x)求导,得f'(x)=2cos(-2x+π/6)*(-2)=4cos(-2x+π/6)
对函数f'(x)=4cos(-2x+π/6),
当-π/2+2kπ≤-2x+π/6≤π/2+2kπ时,f'(x)≤0,f(x)单调递减,此时-π/6-kπ≤x≤π/3-kπ
当π/2+2kπ≤-2x+π/6≤π+2kπ时,f'(x)≥0,f(x)单调递增,此时-5π/12-kπ≤x≤-π/6-kπ
2、f(x)取得最小值时,必有f'(x)=4cos(-2x+π/6)=0
解得-2x+π/6=π/2+kπ,即x=-π/6-kπ/2
将-2x+π/6=π/2+kπ代入f(x)得:f(x)=2sin(π/2+kπ)+a+1
此时,当k为奇数时,sin(π/2+kπ)=-1;当k为偶数时,sin(π/2+kπ)=1
显然,只有当k取奇数时,f(x)取得最小值为:2sin(π/2+kπ)+a+1=2*(-1)+a+1=a-1
此时,x=-π/6-kπ/2 (k=2n+1,n∈Z)
3、∵函数sin(x)的对称中心为x=π/2+kπ
∴函数f(x)=2sin(-2x+π/6)+a+1的对称中心为:-2x+π/6=π/2+kπ,解得x=-π/6-kπ/2 (k∈Z)
4、若当π/6≤x≤π/3时,f(x)单调递减,∴f(x)的最小值为f(π/3)=-1
即f(π/3)=2sin(-2π/3+π/6)+a+1=2sin(-π/2)+a+1=2*(-1)+a+1=a-1=-1,∴a=0
5、若当π/6≤x≤π/3时,f(x)单调递减,∴f(x)的最大值为f(π/6)=1
即f(π/6)=2sin(-2π/6+π/6)+a+1=2sin(-π/6)+a+1=2*(-1/2)+a+1=a=1,∴a=1
呼!头都做晕了,
对函数f'(x)=4cos(-2x+π/6),
当-π/2+2kπ≤-2x+π/6≤π/2+2kπ时,f'(x)≤0,f(x)单调递减,此时-π/6-kπ≤x≤π/3-kπ
当π/2+2kπ≤-2x+π/6≤π+2kπ时,f'(x)≥0,f(x)单调递增,此时-5π/12-kπ≤x≤-π/6-kπ
2、f(x)取得最小值时,必有f'(x)=4cos(-2x+π/6)=0
解得-2x+π/6=π/2+kπ,即x=-π/6-kπ/2
将-2x+π/6=π/2+kπ代入f(x)得:f(x)=2sin(π/2+kπ)+a+1
此时,当k为奇数时,sin(π/2+kπ)=-1;当k为偶数时,sin(π/2+kπ)=1
显然,只有当k取奇数时,f(x)取得最小值为:2sin(π/2+kπ)+a+1=2*(-1)+a+1=a-1
此时,x=-π/6-kπ/2 (k=2n+1,n∈Z)
3、∵函数sin(x)的对称中心为x=π/2+kπ
∴函数f(x)=2sin(-2x+π/6)+a+1的对称中心为:-2x+π/6=π/2+kπ,解得x=-π/6-kπ/2 (k∈Z)
4、若当π/6≤x≤π/3时,f(x)单调递减,∴f(x)的最小值为f(π/3)=-1
即f(π/3)=2sin(-2π/3+π/6)+a+1=2sin(-π/2)+a+1=2*(-1)+a+1=a-1=-1,∴a=0
5、若当π/6≤x≤π/3时,f(x)单调递减,∴f(x)的最大值为f(π/6)=1
即f(π/6)=2sin(-2π/6+π/6)+a+1=2sin(-π/6)+a+1=2*(-1/2)+a+1=a=1,∴a=1
呼!头都做晕了,
已知f(x)=2sin(2x+π/6)+a+1(a∈R,a为常数)
已知函数f(x)=sin(2x+π/6)+sin(2x-π/6)+cos2x+a(a∈R,a为常数)
已知f(x)=2sin(2x-π/6)+a (a为常数)
已知f(x)=2sin(2x+六分之派)+a+1(a为常数)
已知f(x)=sin(x+π/6)+sin(x-π/6)+acosx+b,(a,b∈R,且均为常数).(1)求函数f(x
已知函数f(x)=sin(2x+pai/6)+sin(2x-pai/6)+cos2x+a(a属于R,a为常数)
已知函数f(x)=sin(2x+π6)+2sin2(x+π6)−2cos2x+a−1(a∈R,a为常数)
已知f(x)=sin(x+a)cosx(a为常数)的图像关于原点对称且f(π/4)=1/2
已知函数f(x)=sin(x+π/6)+sin(x-π/6)+cosx+a的最大值为1(1)求常数a的值.(2)求使f(
设a>0为常数,已知函数f(x)=cos²[x-(2π/3)]+sin²[x-(5π/6)]+asi
已知f(x)=3cos(x+3π2)+cos(x−3π2)+sin(x+π)+a(a∈R,a为常数).
已知函数f(x)=2SIN(2X+π/6)+a a属于常数