已知f(n)=cosnπ/4,n属于正整数.则f(1)+f(2)+f(3)+……f(100)=多少
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 15:30:18
已知f(n)=cosnπ/4,n属于正整数.则f(1)+f(2)+f(3)+……f(100)=多少
因为f(n)=cosnπ/4
所以对于任意k为非负整数
f(8k+1)+f(8k+2)+f(8k+3)+f(8k+4)+f(8k+5)+f(8k+6)+f(8k+7)+f(8k+8)
=cos(2kπ+π/4)+cos(2kπ+2π/4)+cos(2kπ+3π/4)+cos(2kπ+4π/4)
+cos(2kπ+5π/4)+cos(2kπ+6π/4)+cos(2kπ+7π/4)+cos(2kπ+8π/4)
=cosπ/4+cos2π/4+cos3π/4+cos4π/4+cos5π/4+cos6π/4+cos7π/4+cos8π/4
=cosπ/4+cos3π/4-1+cos5π/4+cos7π/4+1
=cosπ/4+cos3π/4+cos5π/4+cos7π/4
=0+0
=0
所以f(1)+f(2)+f(3)+……+f(8)=0
f(9)+f(10)+f(11)+……+f(16)=0
……
f(89)+f(90)+f(91)+……+f(96)=0
所以f(1)+f(2)+f(3)+……f(100)=f(97)+f(98)+f(99)+f(100)
=f(8*12+1)+f(8*12+2)+f(8*12+3)+f(8*12+4)
=f(1)+f(2)+f(3)+f(4)
=cosπ/4+cos2π/4+cos3π/4+cos4π/4
=√2/2+0-√2/2-1
=-1
所以对于任意k为非负整数
f(8k+1)+f(8k+2)+f(8k+3)+f(8k+4)+f(8k+5)+f(8k+6)+f(8k+7)+f(8k+8)
=cos(2kπ+π/4)+cos(2kπ+2π/4)+cos(2kπ+3π/4)+cos(2kπ+4π/4)
+cos(2kπ+5π/4)+cos(2kπ+6π/4)+cos(2kπ+7π/4)+cos(2kπ+8π/4)
=cosπ/4+cos2π/4+cos3π/4+cos4π/4+cos5π/4+cos6π/4+cos7π/4+cos8π/4
=cosπ/4+cos3π/4-1+cos5π/4+cos7π/4+1
=cosπ/4+cos3π/4+cos5π/4+cos7π/4
=0+0
=0
所以f(1)+f(2)+f(3)+……+f(8)=0
f(9)+f(10)+f(11)+……+f(16)=0
……
f(89)+f(90)+f(91)+……+f(96)=0
所以f(1)+f(2)+f(3)+……f(100)=f(97)+f(98)+f(99)+f(100)
=f(8*12+1)+f(8*12+2)+f(8*12+3)+f(8*12+4)
=f(1)+f(2)+f(3)+f(4)
=cosπ/4+cos2π/4+cos3π/4+cos4π/4
=√2/2+0-√2/2-1
=-1
【高一数学】已知函数f(n)=cosnπ/5,则[f(1)+f(2)+f(3)+...f(2009)]/[f(11)+f
已知函数f(n)=sin n排/6,n属于正整数,则f(1)+f(2)+f(3)+…+f(102)=
已知函数y=f(n),满足f(1)=8,且f(n+1)=f(n)+7,n属于正整数,求f(2),f(3),f(4)
已知f(n)=sin(nπ/4) (n属于整数),求f(1)×f(3)×f(5)×……×f(101)的值.
已知a,b属于N+,f(a+b)=f(a)f(b),f(1)=2,则f(2)/f(1)+f(3)/f(2)+...+f(
已知:函数f(n)=sin(nπ/6)(n属于Z),求f(1)*f(3)*f(5)*……*f(101)
已知函数y= :f( 1)=0;f(n+1)=f(n )+3 n 属于正整数,则f(3)等于?
已知函数y=f(n),满足f(1)=8,且f(n+1)=f(n)+7,n∈N(正整数集),求f(2),f(3),f(4)
数学已知f(0)=1,f(n)=nf(n-1)(n属于正整数) 求f(n)
设f(n)=n+f(1)+f(2)+f(3)+……+f(n-1),用数学归纳法证明“n+f(1)+f(2)+f(3)+…
已知f(x)=ax+b,若f(2)、f(5)、f(4)成等比数列,f(8)=15,求f(1)+f(2)+……+f(n)
n为正整数,f(n)为正整数,f(n)为n的增函数.f[f(n)]=2n+1,求证:4/3