解释cot(πx/2)=tan(π/2-πx/2)=tan[(1-x)π/2]~(1-x)π/2
设函数f(x)=[cot(-x-π)sin(2π+x)]/[cos(-x)tan(3π-x)].(1)若f(α)=(根3
1)tan(x/2+π/4)+tan(x/2-π/4)=2tanx
请问sin(x+π/2)=?cos(x+π/2)=?tan(x+π/2)=?cot(x+π/2)=?sec(x+π/2)
f(a)=[sin(π-x)cos(2π-x)tan(-x+3π/2)]/cot(-x -π)sin(-π--x) 化简
设y=(tan^2 x-csc^2 x )/(tan^2 x+cot^2 x -1) (a)证明y=1- 2/(tan^
tanx+tan(π/2 -x)=?
怎么证明tan^2x+cot^2x=2(3+cos4x)/1-cos4x
化简cos(π/2-x)cos(π/2+x)cot(π-x)/sin(3π/2+x)cos(3π+x)tan(π+x)
函数f(x)=tan(x^2-π/2)是( )
证明sec x+tanx=tan(π/4 +x/2)
tan(X/2+π/4)+tan(x/2-π/4)=2tanx?
tan( x/2+π/4)+tan(x/2-π/4 )=2tanx