作业帮 > 数学 > 作业

f(x)=4x^2-ax+5在区间[2,正无穷]是曾函数,则f(1)的取值范围是

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 06:57:30
f(x)=4x^2-ax+5在区间[2,正无穷]是曾函数,则f(1)的取值范围是
2根号3,正无穷 左闭区间 我做出来怎么是整数.
f(x)=4x^2-ax+5在区间[2,正无穷]是曾函数,则f(1)的取值范围是
解析,
f(x)=4x²-ax+5,
f(x)的对称轴是x=a/8,又f(x)在区间【2,+∞)为增函数,
故,a/8≤2,即是a≤16
f(1)=4-a+5=9-a,
故,f(1)≥-7.