常微分方程x''+Ax=B,其中AB为常数(B不为0的时候),这样子的方程怎么解?我只需要这个,这是有关简谐振动的东东!
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 01:38:25
常微分方程
x''+Ax=B,其中AB为常数(B不为0的时候),这样子的方程怎么解?我只需要这个,这是有关简谐振动的东东!我需要解的形式以及如何确定最后解的参量,
x''+Ax=B,其中AB为常数(B不为0的时候),这样子的方程怎么解?我只需要这个,这是有关简谐振动的东东!我需要解的形式以及如何确定最后解的参量,
这是个非齐次的二阶常微分方程,所以,先考虑他的齐次形式
我就假设是x对t求导了啊,那这个方程的齐次形式就可以写成
x''+Ax=0 借这个方程的时候 设x=exp(mt) 就可以得到 x'=m*exp(mt) x''=(m^2)*exp(mt) 然后带回原方程就可以得到方程 m^2+A=0 然后你就可以得到 m1=+(-A)^(1/2),m2= -(-A)^(1/2)这个时候还要分类讨论,
如果你A小于零,那么 -A 就大于零 ,那么你上面方程的解就是两个的实根,这个时候你这个其次形式的方程的解的形式就是 yc=C1* exp(m1*x)+C2*exp(m2*x) C1 C2 都是常数
如果你A大于零(我也不知道简谐振动里允不允许有复数形式.) ,A大于零就是m为两个复根.那你就把m写成复数的形式,比如说m1=+i*A^(1/2) ,m2=-1*A(1/2)
那你的齐次形式的方程的解就是yc=B1*cos(A^(1/2)+B2*sin (A^(1/2)) B1 B2也都是常数
这个时候你再来考虑非齐次的形式 也就是 x''+Ax=B 因为你的B是个常数,所以用待定系数法做就是设 非齐次方程的特殊解为 yp=K0+ K1x然后yp‘=K1 yp''=0 代回原方程 就解出K1=0,K0= B/A
然后这个非齐次方程的通解就是你见面求出来的那个yc加上这个yp
即y=yc+yp
目测是这样了.希望是对的.
我就假设是x对t求导了啊,那这个方程的齐次形式就可以写成
x''+Ax=0 借这个方程的时候 设x=exp(mt) 就可以得到 x'=m*exp(mt) x''=(m^2)*exp(mt) 然后带回原方程就可以得到方程 m^2+A=0 然后你就可以得到 m1=+(-A)^(1/2),m2= -(-A)^(1/2)这个时候还要分类讨论,
如果你A小于零,那么 -A 就大于零 ,那么你上面方程的解就是两个的实根,这个时候你这个其次形式的方程的解的形式就是 yc=C1* exp(m1*x)+C2*exp(m2*x) C1 C2 都是常数
如果你A大于零(我也不知道简谐振动里允不允许有复数形式.) ,A大于零就是m为两个复根.那你就把m写成复数的形式,比如说m1=+i*A^(1/2) ,m2=-1*A(1/2)
那你的齐次形式的方程的解就是yc=B1*cos(A^(1/2)+B2*sin (A^(1/2)) B1 B2也都是常数
这个时候你再来考虑非齐次的形式 也就是 x''+Ax=B 因为你的B是个常数,所以用待定系数法做就是设 非齐次方程的特殊解为 yp=K0+ K1x然后yp‘=K1 yp''=0 代回原方程 就解出K1=0,K0= B/A
然后这个非齐次方程的通解就是你见面求出来的那个yc加上这个yp
即y=yc+yp
目测是这样了.希望是对的.
关于x的方程,ax+b=0,(a,b为常数项)是一元一次方程吗
ax+=b(a、b为常数)请问这个方程的解是多少
1.已知函数f(X)=X/aX+b(其中a.b为常数,且ab都不为0),f(2)=1,f(X)有唯一解,则该函数的解析式
求方程X的(lgx)次方=x的b次方/a的解(其中a,b为常数)
求函数Y=X的平方+AX+B(AB为常数)的导数
已知函数f(x)=x2+2x+a,f(bx)=9x2-6x+2,其中x∈R,a、b为常数,求方程f(ax+b)=0的解集
已知函数fx=ax+b分之x平方,ab为常数,且方程fx-x+12=0有两个实数为3 4的根,求
已知函数f(x)=x2+2x+a,f(bx)=9x2-6x+2,其中x属于R,a,b为常数,则方程f(ax+b)的解集为
已知函数f(x)=x+4x+3a,f(bx)=16x–16x+9,其中x∈R,a,b为常数,则方程f(ax+b)=0的解
微分方程变差分方程形如x'=ax+b,这样的微分方程怎么变成差分方程,在此先谢.
设非齐次线性微分方程y'+P(x)y=Q(x)有两个不同的解a(x),b(x),C为任意常数,该方程的通解?
已知函数f(x)=x2+2x+a,f(bx)=ax2-6x+2 其中x∈R a,b为常数,则方程f(ax+b)=0的解集