在△ABC外作等腰RT△和ACE等腰RT△ABD 作ah垂直于bc 延长ha交de与m 角bad=90度 角cae=90
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 21:22:18
在△ABC外作等腰RT△和ACE等腰RT△ABD 作ah垂直于bc 延长ha交de与m 角bad=90度 角cae=90度 求dm等于me
证明:过点D做AE的平行线,交AM延长线于点N ,如图所示
∵∠MAE+∠CAH=90
又AH⊥BC,∠CAH+∠ACH=90
∴∠MAE=∠ACH
同样可以证明
∠MAD=∠ABH
∵DN‖AE
∴∠MAE=∠DNA(内错角)
∴∠ACH=∠DNA
在△DNA与△ABC中
∠MAD=∠ABH
∠ACH=∠DNA
且AD=AB(等腰三角形两腰)
∴△DNA≌△ABC
∴DN=AC=AE
∴AN=BC
在△ENA与△ABC中
∵AN=BC
∠MAE=∠ACH
AE=AC
∴△ENA≌△ABC(两边夹角)
∴NE=AB=AD
在四边形ADNE中
DN=AE
NE=AD
∴四边形为平行四边形
∴DE与AN互相垂直平分
∴DM=ME
∵∠MAE+∠CAH=90
又AH⊥BC,∠CAH+∠ACH=90
∴∠MAE=∠ACH
同样可以证明
∠MAD=∠ABH
∵DN‖AE
∴∠MAE=∠DNA(内错角)
∴∠ACH=∠DNA
在△DNA与△ABC中
∠MAD=∠ABH
∠ACH=∠DNA
且AD=AB(等腰三角形两腰)
∴△DNA≌△ABC
∴DN=AC=AE
∴AN=BC
在△ENA与△ABC中
∵AN=BC
∠MAE=∠ACH
AE=AC
∴△ENA≌△ABC(两边夹角)
∴NE=AB=AD
在四边形ADNE中
DN=AE
NE=AD
∴四边形为平行四边形
∴DE与AN互相垂直平分
∴DM=ME
以△ABC的两边AB,AC为腰分别向外作等腰Rt△ABD和等腰Rt△ACE,∠BAD=∠CAE=90°,连接DE,M,N
如图所示,在△ABC的外侧作Rt△ABD和Rt△ACE,∠ABD=∠ACE=90°,且∠BAD=∠CAE,M是DE的中点
如图,已知在△ABC外作等腰直角三角形ABD和等腰直角三角形ACE,且∠BAD=∠CAE=90°,AM为△ABC中BC边
如图,已知三角形ABC外作等腰直角三角形ABD和等腰直角三角形ACE,且∠BAD=∠CAE=90°,AM为△ABC中BC
等腰Rt△ABC,角CAB=90,以AB为边向外作等边△ABD,AE垂直BD,CD、AE交于点M,求DM=1/2BC
已知△ABC,作等腰△ABD与等腰△ACE,使AB=AD,AC=AE,∠BAD=∠CAE,直线CD、BE交于点O.
77已知△ABC,作等腰△ABD与等腰△ACE,使AB=AD,AC=AE,∠BAD=∠CAE,直线CD,BE交于O.
77已知△ABC,作等腰△ABD与等腰△ACE,使AB=AD,AC=AE,∠BAD=∠CAE,直线CD、BE交于O.
已知△ABC,作等腰△ABD与等腰△ACE,使AB=AD,AC=AE,∠BAD=∠CAE,直线CD.,BE交于点O (1
19、已知△ABC,作等腰△ABD与等腰△ACE,使AB=AD,AC=AE,∠BAD=∠CAE,直线CD、BE交于点O
如图,以△ABC的边AB和AC为腰,分别向△ABC外作等腰Rt△ABD和等腰Rt△ACE,其中∠DAB=∠EAC=90°
如图 在等腰RT△ABC中∠ACB=90 D为BC的中点DE垂直AB 垂足为点E 过点B作BF平行AC交DE的延长线于点