用三重积分求解平面x/a+y/b+c/z=1(a》0,b》0,c》0)和三个坐标面
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 12:36:32
用三重积分求解
平面x/a+y/b+c/z=1(a》0,b》0,c》0)和三个坐标面
平面x/a+y/b+c/z=1(a》0,b》0,c》0)和三个坐标面
好简单!先一后二或者先二后一都能解!先二后一吧,首先,把这个平面投影到xoy面,得到直线方程x/a y/b=1,开始积分!对x,从0到a.对y,从0到b(1-x/a).对z.从0到c(1-x/a-y/b).dxdydz!结束!明白不?上个回答你的真搞笑,题不完整,哈哈,你没学过高数吧?三重积分积出的是体积,计算三重积分有三种方法,直角坐标、柱坐标、球坐标,具体用哪个方法你得看题中给的方程!参数方程用后两种简单!唉,不说了,睡觉了!
计算三重积分∫∫∫(x/a+y/b+z/c)dV 积分域为三个坐标面和平面x/a+y/b+z/c=1(a,b,c>0)所
利用重积分求由平面x/a+y/b+z/c=1和三个坐标平面所围成的立体的体积(其中a>0,b>0,c>0)
椭球面的三重积分求x^2/a^2+y^2/b^2+z^2/c^2的三重积分,其中积分区域由曲面x^2/a^2+y^2/b
用三重积分求椭球x²/a²+y²/b²+z²/c²=1的体积
求椭球面x^2/a^2+y^2/b^2+z^2/c^2=1在第一卦限内的点,使得椭球面过该点的切平面与三个坐标面围成的四
计算三重积分,其中V为三个坐标面及平面 x+y+z=1 所围成的闭区域
计算三重积分∫∫∫Ωzdxdydz,其中Ω为三个坐标面及平面2/x+y+Z=1所围成的区域
计算三重积分∫∫∫xdxdydz,其中Ω为三个坐标面及平面x+2y+z=1所围成的闭区域
计算三重积分∫∫∫ xydxdydz 其中Ω为三个坐标面及平面x+y+z=1所围成的闭区域
用投影法和截面法分别计算求三重积分I=∫∫∫z^2dxdydz,Ω为三个坐标平面及平面x+y+z=1,及x+y+z=2所
已知长方体的三个面在坐标面上,与原点相对的点在x/a+y/b+z/c=1上,求长方体的最大体积
球面的三重积分设M由上半球面x^2+y^2+z^2=a^2与平面z=0围成,则x^2+y^2+z^2在区域M上的三重积分