作业帮 > 数学 > 作业

如图 △ABC中 ∠ABC=150°,点G是AC上一点,且∠ABG=30°,求:AC×BG=BC×AG

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 03:47:40
如图 △ABC中 ∠ABC=150°,点G是AC上一点,且∠ABG=30°,求:AC×BG=BC×AG
如图 △ABC中 ∠ABC=150°,点G是AC上一点,且∠ABG=30°,求:AC×BG=BC×AG
证明:
过C点作CD//GB,交AB延长线于D
则∠D=∠ABG=30°
∵∠ABC=150°
∴∠CBD=180°-150°=30°
∴∠CBD=∠D
∴BC=CD
∵CD//GB
∴AG/AC=BG/CD
即AG/AC=BG/BC
转化为AC×BG=BC×AG