作业帮 > 数学 > 作业

观察下列各式(x-1)(x²+x+1)=x²-1,(x-1)(x³+x²+1)=

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 12:14:55
观察下列各式(x-1)(x²+x+1)=x²-1,(x-1)(x³+x²+1)=x四次方-1
根据以上算式,求出1+2+2²+·········+X六十二次方+2六十三次方的结果是
观察下列各式(x-1)(x²+x+1)=x²-1,(x-1)(x³+x²+1)=
xⁿ - 1 = (x - 1)(xⁿ-¹ + xⁿ-² + ...+ x + 1)
再问: 根据以上算式,求出1+2+2²+·········+X六十二次方+2六十三次方的结果是
再答: 1 + 2 + ... + 2ⁿ = 2ⁿ+¹ - 1 1 + 2 + 2² + ... + 2^63 = 2^64 - 1 1 + x + x² + ... + x^63 = (x^64 - 1) / (x - 1)
再问: ``````````````````````````,注意例题是乘,问题是加
再答: (2 - 1)(1 + 2 + 2² + ... + 2^63) = 2^64 - 1 (x - 1)(1 + x + x² + ... + x^63) = x^64 - 1