作业帮 > 综合 > 作业

如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=C

来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/13 19:57:50
如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.在此运动变化过程中,有下列五个结论:
①△DFE是等腰直角三角形;  ②四边形CDFE不可能为正方形;
③DE长度的最小值为4;     ④四边形CDFE的面积保持不变;
⑤△CDE面积的最大值为8.其中正确结论是①④⑤①④⑤.
如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=C
解;连接CF.

∵△ABC为等腰直角三角形,
∴∠FCB=∠A=45°,CF=AF=FB,
∵AD=CE,
∴△ADF≌△CEF,
∴EF=DF,∠CFE=∠AFD,
∵∠AFD+∠CFD=90°
∴∠CFE+∠CFD=∠EFD=90°,
∴△EDF是等腰直角三角形,
∴①正确;
当D、E分别为AC,BC的中点时,四边形CDEF是正方形,
因此②错误;
∵△ADF≌△CEF,
∴S△CEF=S△ADF
∴④是正确的;
∵△DEF是等腰直角三角形,
∴当DE最小时,DF也最小,
即当DF⊥AC时,DE最小,此时DF=
1
2BC=4,
∴DE=
2DF=4
2,
∴③错误;
当△CDE面积最大时,由④知,此时△DEF的面积最小,此时,
S△CDE=S四边形CEFD-S△DEF=S△AFC-S△DEF=16-8=8,
∴⑤正确.综上所述正确的有①④⑤.
故答案为:①④⑤.