已知数列{an} {bn} {cn}满足(an+1-an)(bn+1-bn)=cn,n属于N*
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 03:54:30
已知数列{an} {bn} {cn}满足(an+1-an)(bn+1-bn)=cn,n属于N*
(1)设an=1/3^n,bn=1-3n,求数列{cn}的前n项和Sn
(2)设cn=2n+4,{an}是公差为2的等差数列,若b1=1,求{bn}的通项公式
(3)设cn=3n-25,an=n^2-8n,求正整数k使得对一切n属于N*,均有bn≥bk
(1)设an=1/3^n,bn=1-3n,求数列{cn}的前n项和Sn
(2)设cn=2n+4,{an}是公差为2的等差数列,若b1=1,求{bn}的通项公式
(3)设cn=3n-25,an=n^2-8n,求正整数k使得对一切n属于N*,均有bn≥bk
c(n)=[a(n+1)-a(n)][b(n+1)-b(n)],
(1) c(n) = -3[1/3^(n+1)-1/3^n] = -3*1/3^(n+1)*[1-3] = 2/3^n,
s(n) = (2/3)[1+1/3 + ...+ 1/3^(n-1)] = (2/3)[1-1/3^n]/[1-1/3] = 1-1/3^n
(2) 2n+4 = 2[b(n+1)-b(n)],
b(n+1)-b(n) = n+2,
b(n+1) = b(n) + n+2 = b(n) + [n(n+1)-(n-1)n]/2 + 2[n+1-n],
b(n+1) - n(n+1)/2 - 2(n+1) = b(n) - (n-1)n/2 - 2n,
{b(n)-(n-1)n/2 - 2n}是首项为b(1)-2=-1,的常数数列.
b(n) - (n-1)n/2 -2n = -1,
b(n) = (n-1)n/2 + 2n-1
(3) 3n-25 = [(n+1)^2-n^2-8][b(n+1)-b(n)]=[2n-7-n^2][b(n+1)-b(n)],
n^2 -2n + 7 = (n-1)^2 + 6 >=6 >0.
b(n+1)-b(n) = (3n-25)/[2n-7-n^2] = 3(25/3-n)/[(n-1)^2 + 6],
1b(n),{b(n)}单调递增.1
(1) c(n) = -3[1/3^(n+1)-1/3^n] = -3*1/3^(n+1)*[1-3] = 2/3^n,
s(n) = (2/3)[1+1/3 + ...+ 1/3^(n-1)] = (2/3)[1-1/3^n]/[1-1/3] = 1-1/3^n
(2) 2n+4 = 2[b(n+1)-b(n)],
b(n+1)-b(n) = n+2,
b(n+1) = b(n) + n+2 = b(n) + [n(n+1)-(n-1)n]/2 + 2[n+1-n],
b(n+1) - n(n+1)/2 - 2(n+1) = b(n) - (n-1)n/2 - 2n,
{b(n)-(n-1)n/2 - 2n}是首项为b(1)-2=-1,的常数数列.
b(n) - (n-1)n/2 -2n = -1,
b(n) = (n-1)n/2 + 2n-1
(3) 3n-25 = [(n+1)^2-n^2-8][b(n+1)-b(n)]=[2n-7-n^2][b(n+1)-b(n)],
n^2 -2n + 7 = (n-1)^2 + 6 >=6 >0.
b(n+1)-b(n) = (3n-25)/[2n-7-n^2] = 3(25/3-n)/[(n-1)^2 + 6],
1b(n),{b(n)}单调递增.1
已知数列an,bn,cn满足[a(n+1)-an][b(n+1)-bn]=cn
已知an=n,bn=4^n-1数列cn的通项公式cn=an*bn求cn的sn
已知数列an=4n-2和bn=2/4^(n-1),设Cn=an/bn,求数列{Cn}的前n项和Tn
已知数列an,bn,cn满足[a(n+1)-an][b(n+1)-bn]=cn 若数列an的通项公式为an=2n-1 设
已知数列{an}的通项an=2n,{bn}的通项为bn=(1/3)^n,令cn=an*bn,求{cn}的前n项和
已知数列{an}中的前n项和为Sn=-3n^2+6n,数列{bn}满足bn=(1/2)^n-1,数列满足Cn=1/6an
在平面直角坐标系中,已知三个点列{An},{Bn},{Cn},其中An(n,an),Bn(n,bn),Cn(n-1,0
已知数列an满足前n项和Sn=n平方+1.数列bn满足bn=2\an+1,且前n项和为Tn,设Cn=T的2n+1个数—T
数列与向量综合题~在平面直角坐标系中,已知An(n,an),Bn(n,bn)、Cn(n-1,0)(n是正整数,且an、b
已知数列an满足:a1=a2=1,an+2=an+1+an,若cn=an-4bn,bn属于整数,且cn大于等于0小于4,
已知数列{an}和{bn}满足关系式:bn=a1+a2+a3+...+an/n(n属于N*) (1)若bn=n^2,求数
已知数列{an}的前n项和为Sn,且对任意n属于N+有an+Sn=n,设Cn=n(1-bn)求数列{Cn}的前n项和Tn