设数列{an}的前n项和是Sn,Sn满足:S1=a(a≠0),Sn+1 =3Sn+1(n∈N*),数列{bn}满足:bn
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 20:46:48
设数列{an}的前n项和是Sn,Sn满足:S1=a(a≠0),Sn+1 =3Sn+1(n∈N*),数列{bn}满足:bn+2 =2bn+1-bn,且
设数列{an}的前n项和是Sn,Sn满足:S1=a(a≠0),Sn+1 =3 Sn+1(n∈N*),数列{bn}满足:bn+2 =2bn+1-bn (n∈N*),且b3=3,b5=9.
(1)分别求数列{an}和{bn}的通项公式;
(2)若a=1,若对任意的n∈N*,都有(Sn+1/2)*k≥bn恒成立,求实数k的取值范围.
设数列{an}的前n项和是Sn,Sn满足:S1=a(a≠0),Sn+1 =3 Sn+1(n∈N*),数列{bn}满足:bn+2 =2bn+1-bn (n∈N*),且b3=3,b5=9.
(1)分别求数列{an}和{bn}的通项公式;
(2)若a=1,若对任意的n∈N*,都有(Sn+1/2)*k≥bn恒成立,求实数k的取值范围.
(1)
S(n+1)=3Sn+1
S(n+1)+1/2=3(Sn+1/2)
[S(n+1)+1/2]/(Sn+1/2)=3
(Sn+1/2)/(S1+1/2)=3^(n-1)
Sn = -1/2 + (a+1/2)3^(n-1)
an = Sn-S(n-1)
= (2a+1).3^(n-2)
ie
an = a ; n=1
= (2a+1).3^(n-2) ; n>=2
b(n+2) = 2b(n+1)-bn
The aux. equation
x^2-2x+1 =0
x=1
let
bn = A+Bn
b3= A+3B =3 (1)
b5= A+5B = 9 (2)
(2)-(1)
B=3
A=-6
bn =9n-6
(2)
a=1
an =3^(n-1)
Sn= (3^n-1)/2
(Sn+1/2)*k≥bn
(3^n)*k≥ 9n-6
k≥ (9n-6)/3^n
let
f(x)= (9x-6) . 3^(-x)
f'(x) = 3^(-x) [ -(9x-6)ln3 + 9 ]
f'(x) =0
-(9x-6)ln3 + 9 =0
x= (9-6ln3)/(9ln3) =0.243 (max)
max (9n-6)/3^n at n=1
max (9n-6)/3^n = 3/3 =1
ie k≥1
S(n+1)=3Sn+1
S(n+1)+1/2=3(Sn+1/2)
[S(n+1)+1/2]/(Sn+1/2)=3
(Sn+1/2)/(S1+1/2)=3^(n-1)
Sn = -1/2 + (a+1/2)3^(n-1)
an = Sn-S(n-1)
= (2a+1).3^(n-2)
ie
an = a ; n=1
= (2a+1).3^(n-2) ; n>=2
b(n+2) = 2b(n+1)-bn
The aux. equation
x^2-2x+1 =0
x=1
let
bn = A+Bn
b3= A+3B =3 (1)
b5= A+5B = 9 (2)
(2)-(1)
B=3
A=-6
bn =9n-6
(2)
a=1
an =3^(n-1)
Sn= (3^n-1)/2
(Sn+1/2)*k≥bn
(3^n)*k≥ 9n-6
k≥ (9n-6)/3^n
let
f(x)= (9x-6) . 3^(-x)
f'(x) = 3^(-x) [ -(9x-6)ln3 + 9 ]
f'(x) =0
-(9x-6)ln3 + 9 =0
x= (9-6ln3)/(9ln3) =0.243 (max)
max (9n-6)/3^n at n=1
max (9n-6)/3^n = 3/3 =1
ie k≥1
设数列{an}的前n项和为sn.已知a1=a,an+1=sn-3n,n∈N*,设bn=sn-3n,且bn≠0
设数列{An}的前n项和为Sn,已知A1=a,A(n+1)=Sn+3∧n,n是正整数,设Bn=Sn-3∧n,求数列{Bn
设数列{an}的前n项和为Sn,已知a1=a,an+1=Sn+3^n,n∈N+.设bn=Sn+3n,求数列{bn}的通项
设数列{an}的前n项和为sn,已知a1=a,an+1=sn+3^n,n∈N* (1)设bn=sn-3^n,求数列{bn
已知数列{an}的前n项和Sn=3×(3/2)^(n-1)-1,数列{bn}满足bn=a(n+1)/log3/2(an+
设数列{An}的前n项和为Sn,且满足Sn=2An-3n,n=1,2,3……(1)设Bn=An+3,求证:数列{Bn}是
数列an的前n项和Sn满足Sn=n^2-8n+1,若bn=|an|,求数列{bn}的通项公式
设公比大于0的数列an的前n项和是Sn,a=1,S4=5S2,数列bn的前n项合为Tn,满足b1=1,Tn=n^2bn,
设数列{an}的前n项和为Sn,数列{bn}满足:bn=nan,且数列{bn}的前n项和为(n-1)Sn+2n
设数列{An}的前n项的和为Sn已知A1=a A(n+1)=Sn+3^n (1)设Bn=Sn-3^n 求数列{Bn}的通
数列an的前n项和为Sn,Sn=4an-3,①证明an是等比数列②数列bn满足b1=2,bn+1=an+bn.求数列bn
已知数列an满足a1=1,an=(an-1)/(3a(n-1)+1),设bn=an*a(n+1)求数列bn的前n项和sn