证明:sinA+1/(1+sina+cosa0=1/2tan(a/2)+1/2
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 20:54:47
证明:sinA+1/(1+sina+cosa0=1/2tan(a/2)+1/2
1+sina=sin²(a/2)+cos²(a/2)+2sin(a/2)*cos(a/2)=[sin(a/2)+cos(a/2)]²,
cosa=cos²(a/2)-sin²(a/2)=[cos(a/2)+sin(a/2)]*[cos(a/2)-sin(a/2)]
那么1+sina+cosa=[cos(a/2)+sin(a/2)]*[cos(a/2)-sin(a/2)+cos(a/2)+sin(a/2)]
=2cos(a/2)*[cos(a/2)+sin(a/2)]
所以(sina+1)/(1+sina+cosa)=[cos(a/2)+sin(a/2)]/2cos(a/2)
=[1+tan(a/2)]/2
=1/2*tan(a/2)+1/2
cosa=cos²(a/2)-sin²(a/2)=[cos(a/2)+sin(a/2)]*[cos(a/2)-sin(a/2)]
那么1+sina+cosa=[cos(a/2)+sin(a/2)]*[cos(a/2)-sin(a/2)+cos(a/2)+sin(a/2)]
=2cos(a/2)*[cos(a/2)+sin(a/2)]
所以(sina+1)/(1+sina+cosa)=[cos(a/2)+sin(a/2)]/2cos(a/2)
=[1+tan(a/2)]/2
=1/2*tan(a/2)+1/2
证明(1-cos^2a)/(sina+cosa)-(sina+cosa)/(tan^2a-1)=sina+cosa
证明(1-cos^2a)/(sina-cosa)-(sina+cosa)/(tan^2-1)=sina+cosa
tan(a/2)=sina/(1+cosa) 怎样证明
证明(1+sinA-cosA)/(1+sinA+cosA)=tan(A/2)
若cosa0,化简sina+根号下1-cos^a
证明(1+sina)/cosa=(1+tan(a/2)/(1-tan(a/2))
求证:1-cos^2a/sina-cosa - sina+cosa/tan^2a-1=sina+cosa
三角函数线证明tan(a/2)=sina/( 1+cosα)
tan(a/2)=sina/(1+cosa)=(1-cosa)/sina
tan a/2=3 1-cosa-sina/1+cosa+sina
tan(1+sina)+sina/tan(1+sina)-sina=tana+sina/tanasina
为什么 tan a +1/tan a=sin^2 a +cos^2 a/(sina cos a)