如图,Rt△ABC中,∠C=90°,其内切圆切AC与D点,O为圆心.若| AD |=2| CD |=2
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 20:26:26
∵Rt△ABC中,∠C=90°,其内切圆切AC与D点,O为圆心,|
AD |=2| CD |=2 ,可得 BC ⊥ AC ,且| AD |=2,| CD |=1. 再由圆的切线性质可得 DO ⊥ AC ,故有 BC • AC =0, DO • AC =0. 显然< CD , AC >=π,| AC |=| CD |+| DA |=1+2=3. ∴ BO • AC =( BC + CD + DO )• AC = BC • AC + CD • AC + DO • AC =0+1×3×cosπ+0=-3, 故答案为-3.
如图,在Rt△ABC中,∠ABC=90,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,且AD
如图,Rt△ABC中,∠C=90°,以AB上点O为圆心,BO为半径的圆交AB的中点于E,交BC于D,且与AC切于点P
已知:如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且∠
已知,如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心.OA长为半径的圆与AC,AB分别交于点D,E,且∠
如图在Rt△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心CA为半径的圆与AB、BC分别相交于点D、E求AD的
在Rt△ABC中,∠ABC=900,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,且AD=2
已知,Rt△ABC中,∠C=90°,AC=4,BC=3.以AC上一点O为圆心的⊙O与BC相切于点C,与AC相交于点D.
如图,在Rt三角形ABC中,∠C=90º,点O在AC上,以O为圆心,OC为半径的⊙O与AB切于点D,
1.如图,已知RT△ABC中,∠C=90°,点o在AB上,以O为圆心,OA为半径的圆与AC,AB分别交于D,E且∠CBD
如图,在△ABC中,∠C=90°,AC+BC=9,点O是斜边AB上一点,以O为圆心2为半径的圆分别与AC、BC相切于点D
如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则tan∠ODA
(2014•邢台二模)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的
|