三角形的内角和是180°吗?
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 19:04:38
三角形的内角和是180°吗?
我记得好像在哪里看过,好像是小于180°,这好像是天文学上的发现,不知道的请别答了.
我记得好像在哪里看过,好像是小于180°,这好像是天文学上的发现,不知道的请别答了.
平面三角形的内角和是180°;
球面三角形的内角和是大于180°;
天文学特别面三角形的内角和是小于180°;
如果是小学题目,三角形的内角和当然是180°.
三角形的内角之和为什么等于180度
一、1将一个三角形的三个角分别往内折,三个角刚好组成一平角,所以为180度.
2.在一个顶点作他对边的平行线,用内错角证明.
3.做三角形ABC
过点A作直线EF平行于BC
角EAB=角B
角FAC=角C
角EAB+角FAC+角BAC=180
角BAC+角B+角C=180
4.内角和公式(n-2)*180
5.设三角形三个顶点为A、B、C,分别对应角A、角B、角C;过点A做直线l平行于直线BC,l与射线AB组成角为B',l与射线AC组成角为C',角B'与角B、角C'与角C分别构成内错角,根据平行线内错角相等定理,可得:三角形的内角和=角A+角B+角C=角A+角B'+角C'=180度
6.延长三角形ABC各边,DAB=C+B,EBA=A+C,FCA=A+B
所以DAB+EBA+FCA=2A+2B+2C=360(三角形外角和为360)
所以A+B+C=180
7.延长三角形一条边,形成一个三角形的外交.很容易发现这个角和与它相临的三角形内角相加为一平角(180度),所以它们是邻补角.再过这个内角的顶点作一条直线平行于这个角的对边,将那个外交分成两个角.利用两直线平行,同位角相等,内错角相等,可以证明三角形另外两个角分别于这个外交分出来的两个角相等.则三角形三个内角之和就等于其中那个内角加上它的邻补角,即为180度
8.将三个一样大小的三角形在三个对应角的位置上,分别标上三个字母A,B,C.然后将第一个三角形的A角,第二个三角形的B角,第三个三角形的C角,拼在一起,这时它们的下边(或上边)就正好形成一条直线.即三个角形成了一个平角.就是说三个角的度数和是一百八十度.而这三个角是三角形的三个内角.
二、目前公认的有三种几何体系:
欧氏几何、罗巴切夫斯机-鲍耶几何、黎曼几何,这三种几何唯一的不同点就在于第五公设的不同.欧氏几何第五公设是指过直线外一点有且仅有一条直线与已知直线平行.而罗氏几何则不同,它规定了过直线外一点有无数条直线与已知直线平行.这样三角形的内角和也就小于180度.
黎曼从更高的角度统一了三种几何,称为黎曼几何.在非欧几何里,有很多奇怪的结论.三角形内角和不是180度(黎曼几何中三角形内角和大于180度),圆周率也不是3.14等等.因此在刚出台时,倍受嘲讽,被认为是最无用的理论.直到在球面几何中发现了它的应用才受到重视.
空间如果不存在物质,时空是平直的,用欧氏几何就足够了.比如在狭义相对论中应用的,就是四维伪欧几里得空间.加一个伪字是因为时间坐标前面还有个虚数单位i.当空间存在物质时,物质与时空相互作用,使时空发生了弯曲,这是就要用非欧几何.
球面三角形的内角和是大于180°;
天文学特别面三角形的内角和是小于180°;
如果是小学题目,三角形的内角和当然是180°.
三角形的内角之和为什么等于180度
一、1将一个三角形的三个角分别往内折,三个角刚好组成一平角,所以为180度.
2.在一个顶点作他对边的平行线,用内错角证明.
3.做三角形ABC
过点A作直线EF平行于BC
角EAB=角B
角FAC=角C
角EAB+角FAC+角BAC=180
角BAC+角B+角C=180
4.内角和公式(n-2)*180
5.设三角形三个顶点为A、B、C,分别对应角A、角B、角C;过点A做直线l平行于直线BC,l与射线AB组成角为B',l与射线AC组成角为C',角B'与角B、角C'与角C分别构成内错角,根据平行线内错角相等定理,可得:三角形的内角和=角A+角B+角C=角A+角B'+角C'=180度
6.延长三角形ABC各边,DAB=C+B,EBA=A+C,FCA=A+B
所以DAB+EBA+FCA=2A+2B+2C=360(三角形外角和为360)
所以A+B+C=180
7.延长三角形一条边,形成一个三角形的外交.很容易发现这个角和与它相临的三角形内角相加为一平角(180度),所以它们是邻补角.再过这个内角的顶点作一条直线平行于这个角的对边,将那个外交分成两个角.利用两直线平行,同位角相等,内错角相等,可以证明三角形另外两个角分别于这个外交分出来的两个角相等.则三角形三个内角之和就等于其中那个内角加上它的邻补角,即为180度
8.将三个一样大小的三角形在三个对应角的位置上,分别标上三个字母A,B,C.然后将第一个三角形的A角,第二个三角形的B角,第三个三角形的C角,拼在一起,这时它们的下边(或上边)就正好形成一条直线.即三个角形成了一个平角.就是说三个角的度数和是一百八十度.而这三个角是三角形的三个内角.
二、目前公认的有三种几何体系:
欧氏几何、罗巴切夫斯机-鲍耶几何、黎曼几何,这三种几何唯一的不同点就在于第五公设的不同.欧氏几何第五公设是指过直线外一点有且仅有一条直线与已知直线平行.而罗氏几何则不同,它规定了过直线外一点有无数条直线与已知直线平行.这样三角形的内角和也就小于180度.
黎曼从更高的角度统一了三种几何,称为黎曼几何.在非欧几何里,有很多奇怪的结论.三角形内角和不是180度(黎曼几何中三角形内角和大于180度),圆周率也不是3.14等等.因此在刚出台时,倍受嘲讽,被认为是最无用的理论.直到在球面几何中发现了它的应用才受到重视.
空间如果不存在物质,时空是平直的,用欧氏几何就足够了.比如在狭义相对论中应用的,就是四维伪欧几里得空间.加一个伪字是因为时间坐标前面还有个虚数单位i.当空间存在物质时,物质与时空相互作用,使时空发生了弯曲,这是就要用非欧几何.
根据三角形内角和是180°,你能求出下面的四边形和正六边形的内角和吗?
借助三角形内角和是180°,探究多边形的内角和公式.
命题“三角形的内角和等于180°”是( )
命题中的题设命题:三角形的内角和为180度题设:“如果是三角形”?“是三角形"?”是三角形的内角和“”如果是三角形的内角
证明三角形内角和定理:三角形的三个内角的和等于180°.
根据三角形内角和是180度,你能求出下面的四边形的正六边形的内角和吗
根据三角形的内角和是180度你能说出下面这些图形的内角和吗?
三角形的内角和是180°,四边形的内角和是多少?五边?六边?七边?八边?的内角和怎么画
三角形的内角和等于180度,你能求出四边形的内角和是几度吗?五边形的内角和呢?
根据三角形的内角和是180度,求一个正六边形的内角和.
已知三角形的内角和是180度求下面两个图形的内角和
一个三角形的内角和是180度,请你试求六边形的内角和