以知数列{An}满足递推公式:An+1=1/2An的平方-An+2,n≥1,n∈N, ……
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 00:16:31
以知数列{An}满足递推公式:An+1=1/2An的平方-An+2,n≥1,n∈N, ……
-呈上
(1)若a1=4,证明[1]当n≥2时,有an+1≥2an, [2]当n≥1时,有an+1≥3/2的n次方再乘an,(2)若an=1,证明n≥5,有∑1/ak
A(n+1)=(1/2An的平方)-An+2,n≥1,n∈N, ……
(1)若A1=4,证明[1]当n≥2时,有A(n+1)≥2An, [2]当n≥1时,有A(n+1)≥(3/2的n次方)再乘An,(2)若An=1,证明n≥5,有∑1/Ak
-呈上
(1)若a1=4,证明[1]当n≥2时,有an+1≥2an, [2]当n≥1时,有an+1≥3/2的n次方再乘an,(2)若an=1,证明n≥5,有∑1/ak
A(n+1)=(1/2An的平方)-An+2,n≥1,n∈N, ……
(1)若A1=4,证明[1]当n≥2时,有A(n+1)≥2An, [2]当n≥1时,有A(n+1)≥(3/2的n次方)再乘An,(2)若An=1,证明n≥5,有∑1/Ak
(1)
[1]A(n+1)-A(n)=1/2A(n)^2-2*A(n)+2=1/2(A(n)-2)^2>=0
故A(n)为递增数列.A(1)=4,A(2)=6.n>=2时 A(n)>=6.
A(n+1)-2A(n)=1/2A(n)^2-3*A(n)+2=1/2(A(n)-3)^2-5/4>=0
A(n+1)>=2A(n).
[1]A(n+1)-A(n)=1/2A(n)^2-2*A(n)+2=1/2(A(n)-2)^2>=0
故A(n)为递增数列.A(1)=4,A(2)=6.n>=2时 A(n)>=6.
A(n+1)-2A(n)=1/2A(n)^2-3*A(n)+2=1/2(A(n)-3)^2-5/4>=0
A(n+1)>=2A(n).
已知数列{an}满足a1=1,an+1=2an/(an+2)(n∈N+),则数列{an}的通项公式为
已知一个数列{An}满足递推公式:An=3A(角标n-1)(n≥2),且A1=4,求数列{An}通项
已知数列{an}满足a1=1/2,an+1=an+1/n的平方+n求an
数列{an}满足a1=1/2,a1+a2+……+an=n的平方×an,则数列{an}的通项公式?
已知数列{an}满足a1=1,an=(an-1)/3an-1+1,(n>=2,n属于N*),求数列{an}的通项公式
已知数列{an}满足an+1=2an+n+1(n∈N*).
已知数列{An}满足A1=0.5,A1+A2+…+An=n^2An(n∈N*),试用数学归纳法证明:An=1/n(n+1
设数列an满足a1+3a2+3^2a3+.+3^n-1an=n/3,n∈N*,求数列an的通项公式
数列通式问题数列an的an=an-1+2^n(n>2 n∈N*)则它的通项公式数列an的前n项和Sn满足an=2-2Sn
b>0,数列{an}满足:a1=b,an=nban-1/(an-1+n-1)(n≥2).⑴求数列{an}的通项公式
已知数列{an}满足a1=1,an+1=2an+1(n∈N﹡).求数列{an}的通项公式.
数列{an}满足a1=1 an+1=2n+1an/an+2n