作业帮 > 数学 > 作业

设函数f(x)=x^2-ax+2lnx,其中a>0

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 23:10:41
设函数f(x)=x^2-ax+2lnx,其中a>0
1)当a<4时,判断函数f(x)的单调性
2)当a=5时,求函数f(x)的极值
设函数f(x)=x^2-ax+2lnx,其中a>0
(1)
f'(x) = 2x + 2/x - a
≥ 2√(2x*2/x) - a
= 4-a
>0
∴f(x)单调递增
(2)f(x) = x² -5x+2lnx
f'(x) = 2x - 5 +2/x = 0
解得 x = 1/2,2
x (0,1/2) 1/2 (1/2,2) 2 (2,+∞)
f'(x) + 0 - 0 +
f(x) 增 极大值 减 极小值 增
所以极大值 f(1/2) = -9/4 - 2ln2
极小值 f(2) = 2ln2 - 6
再问: 2√(2x*2/x)怎么来的?
再答: a>0,b>0时, a+b≥2√(ab)