发给你
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/07 04:36:55
解题思路: 函数单调性 。
解题过程:
2、令在定义域内的x1>x2
由于是减函数,所以
f(x1)-f(x2)<0.带入f(x)=√(3-ax)/(a-1)
[√(3-ax1)-√(3-ax2)]/(a-1)<0
下面我们对a进行分类讨论
①a>1时
a-1>0,要使[√(3-ax1)-√(3-ax2)]/(a-1)<0
就有√(3-ax1)<√(3-ax2)因为3-ax1<3-ax2在a>1时恒成立
所以,只需讨论根号下的数大于0这个限制条件
解得a∈(0,3]
②a<1时,a-1<0
要使[√(3-ax1)-√(3-ax2)]/(a-1)<0
就有√(3-ax1)>√(3-ax2),3-ax1>3-ax2在a<0时成立,
且a<0时,定义域内的x可使函数恒有意义
综上所述,a的取值范围是
(-∞,0)∪(1,3]
最终答案:略
解题过程:
2、令在定义域内的x1>x2
由于是减函数,所以
f(x1)-f(x2)<0.带入f(x)=√(3-ax)/(a-1)
[√(3-ax1)-√(3-ax2)]/(a-1)<0
下面我们对a进行分类讨论
①a>1时
a-1>0,要使[√(3-ax1)-√(3-ax2)]/(a-1)<0
就有√(3-ax1)<√(3-ax2)因为3-ax1<3-ax2在a>1时恒成立
所以,只需讨论根号下的数大于0这个限制条件
解得a∈(0,3]
②a<1时,a-1<0
要使[√(3-ax1)-√(3-ax2)]/(a-1)<0
就有√(3-ax1)>√(3-ax2),3-ax1>3-ax2在a<0时成立,
且a<0时,定义域内的x可使函数恒有意义
综上所述,a的取值范围是
(-∞,0)∪(1,3]
最终答案:略