已知数列{an}的前n项和为Sn,且满足Sn=2an-2n(n∈N*)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 19:19:50
已知数列{an}的前n项和为Sn,且满足Sn=2an-2n(n∈N*)
1)设bn=an+2,求数列{bn}的通项公式;
2)若数列{cn}满足cn=log2 bn,求数列{cn\bn}的前n项和Tn.
1)设bn=an+2,求数列{bn}的通项公式;
2)若数列{cn}满足cn=log2 bn,求数列{cn\bn}的前n项和Tn.
/>(1)
S1=a1=2a1-2
a1=2
Sn=2an-2n
Sn-1=2a(n-1)-2(n-1)
an=Sn-Sn-1=2an-2n-2a(n-1)+2(n-1)=2an-2a(n-1)-2
an=2a(n-1)+2
an +2=2a(n-1) +4
(an +2)/[a(n-1)+2]=2,为定值.
a1+2=2+2=4
数列{an +2}是以4为首项,2为公比的等比数列.
bn=an +2
数列{bn}是以4为首项,2为公比的等比数列.
bn=4×2^(n-1)=2^(n+1)
数列{bn}的通项公式为bn=2^(n+1)
(2)
cn=log2(bn)=log2[2^(n+1)]=n+1
cn/bn=(n+1)/2^(n+1)
Tn=c1/b1+c2/b2+...+cn/bn
=2/2^2+3/2^3+...+(n+1)/2^(n+1)
Tn/2=2/2^3+3/2^4+...+n/2^(n+1)+(n+1)/2^(n+2)
Tn-Tn/2=Tn/2=2/2^2+1/2^3+1/2^4+...+1/2^(n+1)-(n+1)/2^(n+2)
Tn=2/2+1/2^2+1/2^3+...+1/2^n -(n+1)/2^(n+1)
=1/2+1/2+1/2^2+1/2^3+...+1/2^n-(n+1)/2^(n+1)
=1/2 +(1/2)[1-(1/2)^n]/(1-1/2)-(n+1)/2^(n+1)
=3/2 -1/2^n- (n+1)/2^(n+1)
S1=a1=2a1-2
a1=2
Sn=2an-2n
Sn-1=2a(n-1)-2(n-1)
an=Sn-Sn-1=2an-2n-2a(n-1)+2(n-1)=2an-2a(n-1)-2
an=2a(n-1)+2
an +2=2a(n-1) +4
(an +2)/[a(n-1)+2]=2,为定值.
a1+2=2+2=4
数列{an +2}是以4为首项,2为公比的等比数列.
bn=an +2
数列{bn}是以4为首项,2为公比的等比数列.
bn=4×2^(n-1)=2^(n+1)
数列{bn}的通项公式为bn=2^(n+1)
(2)
cn=log2(bn)=log2[2^(n+1)]=n+1
cn/bn=(n+1)/2^(n+1)
Tn=c1/b1+c2/b2+...+cn/bn
=2/2^2+3/2^3+...+(n+1)/2^(n+1)
Tn/2=2/2^3+3/2^4+...+n/2^(n+1)+(n+1)/2^(n+2)
Tn-Tn/2=Tn/2=2/2^2+1/2^3+1/2^4+...+1/2^(n+1)-(n+1)/2^(n+2)
Tn=2/2+1/2^2+1/2^3+...+1/2^n -(n+1)/2^(n+1)
=1/2+1/2+1/2^2+1/2^3+...+1/2^n-(n+1)/2^(n+1)
=1/2 +(1/2)[1-(1/2)^n]/(1-1/2)-(n+1)/2^(n+1)
=3/2 -1/2^n- (n+1)/2^(n+1)
已知数列{An}的前n项和为Sn,且满足Sn=2An-3n(n属于N+) 1.求{An}的通项公式
已知数列{an}的各项均为正数,前n项和为Sn,且满足2Sn=an2+n-4(n∈N*).
已知数列{an}的前n项和为Sn,且满足Sn=2an-1,n为正整数,求数列{an}的通项公式an
已知数列{an}的前n项和为Sn,且满足Sa+Sn=n (n属于N)
已知数列an的前n项和为sn,且满足sn=n²an-n²(n-1),a1=1/2
已知数列{an}的前n项和为Sn,且满足Sn+n=2an(n属于N*)
已知数列{an}的前n项和为Sn,且满足Sn=2an-1(n属于正整数),求数列{an}的通项公式an
已知数列{an}的前n项和为Sn,且Sn=2n^2+n,n∈N*,数列{bn}满足an=4log2(bn),n∈N*
已知数列 {an} 的前n项和为 Sn,且满足 Sn=3/2(an-1) (n∈正整数) 求 an 的通项公式
已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*
已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*
已知数列{an}a1=2前n项和为Sn 且满足Sn Sn-1=3an 求数列{an}的通项公式an