在三角形中解决
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 21:11:30
解题思路: 1)①证明四边形ABNC是正方形,根据正方形的对角线平分一组对角线即可求解; ②根据等腰直角三角形的性质可得∠BNP=∠ACB,然后证明△BNP和△ACP相似,根据相似三角形对应边成比例可得=,再根据两边对应成比例夹角相等可得△ABP和△CNP相似,然后根据相似三角形对应角相等可得∠ANC=∠ABC,从而得解; (2)根据等腰三角形的两底角相等求出∠BNP=∠ACB,然后证明△BNP和△ACP相似,根据相似三角形对应边成比例可得=,再根据两边对应成比例夹角相等可得△ABP和△CNP相似,然后根据相似三角形对应角相等可得∠ANC=∠ABC,然后根据三角形的内角和定理列式整理即可得解.
解题过程:
解题过程: