求I=∫∫∫(x+y+z)²dxdydz,其中Ω:x²+y²≤1,|Z|≤1 .
用投影法和截面法分别计算求三重积分I=∫∫∫z^2dxdydz,Ω为三个坐标平面及平面x+y+z=1,及x+y+z=2所
投影法和截面法求三重积分I=∫∫∫z^2dxdydz,Ω为三个坐标平面及平面x+y+z=1,及x+y+z=2所围成空间闭
一道三重积分高数题∫∫∫(1+x+y+z)ˆ-3 dxdydz ,Ω 为平面 x=0,y=0,z=0,x+y+
计算三重积分,下标积分区域为Ω,求∫∫∫z^3dxdydz ,Ω为x^2+y^2+z^2≤1 ,z+1≥根号下x^2+y
计算三重积分∫∫∫z方dxdydz,其中Ω由z=根号下x^2+y^2与z=1和z=2围成的空闭区
计算三重积分∫∫∫(x+y+x)dxdydz其中Ω,曲面z^2=x^2+y^2与平面z=1围成的闭区域
计算三重积分∫∫∫(x+y+z)^2dxdydz,其中积分局域是x^2/a^2+y^2/b^2+z^2/c^2≤1
∫∫∫(xy)dxdydz ,其中Ω是由柱面x^2+y^2=1及平面z=1,z=0,x=0,y=0所围成的在第一卦限的闭
∫∫∫z^2dxdydz,其中Ω是两个球:x^2+y^2+z^2≤R^2和x^2+y^2+z^2≤2Rz(R>0)的公共
计算三重积分 ∫∫∫(x^2+y^2+z)dxdydz 其中D为曲面z=1-x^2-y^2与xOy平面所围成的区域.
带绝对值的三重积分∫∫∫ |z-x^2+y^2| dxdydz,(注意这里有绝对值)其中空间闭曲面由z=0,z=1及曲面
计算三重积分∫∫∫xy^2z^3dxdydz,其中积分面积是由z=xy,y=x,x=1,z=0所围成的闭区域,